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Abstract

Very few standards exist for fitting products to people. Footwear fit is a

noteworthy example for consumer consideration when purchasing shoes. As

a result, footwear manufacturing industry for achieving commercial success

encountered the problem of developing right footwear which is fulfills con-

sumer’s requirement better than it’s competeries.

Mass customization starts with understanding individual customer’s re-

quirement and it finishes with fulfillment process of satisfying the target

customer with near mass production efficiency. Unlike any other consumer

product, personalized footwear or the matching of footwear to feet is not

easy if delivery of discomfort is predominantly caused by pressure induced

by a shoe that has a design unsuitable for that particular shape of foot.

Footwear fitter have been using manual measurement for a long time, but

the combination of 3D scanning systems with mathematical technique makes

possible the development of systems, which can help in the selection of good

footwear for a given customer. This thesis, provides new approach for ad-

dressing the computerize footwear fit customization in industry problem.

The design of new shoes starts with the design of the new shoe last. A shoe

last is a wooden or metal model of human foot on which shoes are shaped.

Despite the steady increase in accuracy, most available scanning techniques

cause some deficiencies in the point cloud and a set of holes in the trian-

gle meshes. Moreover, data resulting from 3D scanning are given in an

arbitrary position and orientation in a 3D space. To apply sophisticated
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modeling operations on these data sets, substantial post-processing is usu-

ally required.

we described a robust algorithm for filling holes in triangle mesh. First, the

advance front mesh technique is used to generate a new triangular mesh to

cover the hole. Next, the triangles in initial patch mesh is modified by

estimating desirable normals instead of relocating them directly. Finally,

the Poisson equation is applied to optimize the new mesh. After obtaining

complete 3D model, the result data must be generated and aligned before

taking this models for shape analysis such as measuring similarity between

foot and shoe last data base for evaluating footwear fit.

Principle Component Analysis (PCA), aligns a model by considering its

center of mass as the coordinate system origin, and its principle axes as

the coordinate axes. The purpose of the PCA applied to a 3D model is to

make the resulting shape independent to translation and rotation as much

as possible. In analysis, we applied ”weighted” PCA instead of applying

the PCA in a classical way (sets of 3D point-clouds) for alignment of 3D

models. This approach is based on establishing weights associated to center

of gravity of triangles. When all of the models are aligned, an efficient

algorithm to cut the model to several sections toward the heel and toe for

extracting counters is used. Then the area of each contour is calculated and

compared with equal sections in shoe last data base for finding best footwear

fit within the shoe last data base.

Keywords: [Advance front mesh, Poisson equation, Harmonic Function,

”Weighted” Principle Component Analysis.]
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Chapter 1

Introduction

As consumers are becoming increasingly selective of what they wear on

their feet, manufacturers are experiencing problems developing and fit-

ting the accurate footwear that fulfils the consumer’s requirement better

than it’s competitors for achieving commercial success. Thus production

of custom tailored product is widely required in manufacturing industry

nowadays and the business paradigm is moving from producer-centered

productivity to consumer-centered customization.

In this chapter, we first describe the general concept of Mass customiza-

tion. Then the main motivation of work presented in the thesis will be

introduced. Finally the structure of the thesis will be presented.

1.1 Mass customization concept

Mass customization is become an important for manufacturing strategy.

MC enables manufacturers to customize the products or services to fulfill

the exact needs of customers. Generally, mass customization (MC) can be

defined either broadly or narrowly.

MC is defined broadly as the ability to provide products and services that

are individually designed for each customer through high-process agility,

flexibility and integration [17]. Some authors defined MC narrower as in-
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CHAPTER 1. INTRODUCTION 1.1. MASS CUSTOMIZATION . . .

formation technology, flexible processes and organizational structures using

a system that delivers a wide range of products and services in order to

meet particular needs of each of their customers at a cost near that mass-

customized item [97].

In any case, MC can be seen as a systemic idea involving all aspects of

product sale, development, production, and delivery, full-circle from the

customer option up to receiving the finished product. The development of

MC systems can be justified as follow [53]:

- Delivering higher variety production system at lower cost by new flex-

ible manufacturing and information system (IT).

- Increasing demand for product variety and customization.

- Shortening of product life cycles and expanding industrial competition

has led to the breakdown of many mass industries, increasing the need

for production strategies focused on individual customers.

Using the concept of ”product-process matrix” [57], MC systems are po-

sitioned below the main diagonal of this matrix, i.e. having medium to

high-volume process types such as manufacturing cells or assembly line

that are able to deliver the high product varieties usually associated to

function or fixed-type operation.

Annually, manufactures are produced thousands of new products to bring

products closer to ever changing customers tastes [14]. However, provid-

ing variety can be costly. There by manufacture cannot take advantage

of the economic scale in production and distribution. Mass customization

can take place at different levels subject to the technological limitations

and the product. There for, it is important to determine how much cus-

tomization should be undertaken. For instance, if the market place is very

competitive, there may exist a greater need for a high level of customiza-

tion. For instance, Spencer [99] is introduced that automation can be take
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CHAPTER 1. INTRODUCTION 1.2. PROBLEM STATEMNET AND . . .

place in the footwear industry for producing high variety, low volume and

low cost products.

1.2 Problem statemnet and solution outline

The importance of product compatibility for comfort and satisfaction is

well known. Fit is considered to be very importance since mis-fitting shoes

are generally the major cause of foot related illnesses and injuries.

According to Janisse [49] properly fitting footwear are important in avoid-

ing foot discomfort and are essential in patient with arthritis, diabetes,

and other foot disorders such as calluses, corns, hallux valguses, plantar

ulcera. Thus, a pair of shoes designed and manufactured with a good fit

is very important for foot comfort and health. Unlike any other consumer

product, personalized footwear or the matching of footwear to feet is not

easy if delivery of discomfort is predominantly caused by a shoe that has

a design unsuitable for that particular shape of foot.

Footwear fitters have been using manual measurements for a long time.

Anthropometers and plastic tapes are commonly used for obtaining mea-

surements on people [46]. Foot dimensions are measured using the device

such as the Ritz Stick device [85], the Brannock device [8], the Scholl de-

vice [40], calliper.

Foot measuring always takes a lot of time and shoe making industry in

order to make an accurate custom shoe last must manually measure the

specific consumer’s foot, and sometimes, more than thirty measurement

are required. The last is also manually manufactured by experienced last

maker. The process of foot measuring and last manufacturing process and

custom footwear is expensive to produce and time-consuming because of

the complexity constraints imposed by footwear manufacturing process.

Nowadays, the combination of 3D scanning system with mathematical tech-
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CHAPTER 1. INTRODUCTION 1.2. PROBLEM STATEMNET AND . . .

nique makes it possible, automating the process of producing custom tai-

lored footwear based on consumer’s foot shape.

In this thesis, we provide new methods for addressing the computerize

footwear fit customization in industry problems. In basic idea of solution

is to compare the lasts which were used to manufacture the shoes and the

scanned feet of the clients.

Depending on both the complexity of the object to be reverse engineered

and accuracy of adopted data acquisition system technology, some area of

the object outer surface may never be accessible and it cause some defi-

ciencies in the point cloud and a set of holes in the triangle meshes. This

deficiency is not acceptable when the 3D model is taking into actual appli-

cation. Moreover, data resulting from 3D scanning are given in an arbitrary

position and orientation in a 3D space. To apply sophisticated modeling

operations on these data sets, substantial post-processing is usually re-

quired. Thus, the problem of geometric similarity measurement consists

essentially of two sub problems:

- The pose estimation, where complete 3D models is reconstructed(all

of the holes are filled) and properly positioned and aligned

- Comparison or similarity measurement of 3d models.

1.2.1 Automated design and customized manufacturing

In the last few years, three-dimensional models have become more and

more important in several research and application fields of advance in-

formation technology. Following the growing demand of 3D models, the

development of 3D acquisition systems has also become of key practical

and scientific interest.

Automatic 3D acquisition device allow to build highly accurate models of

real 3D objects in a cost- and time-effective manner. This technology en-
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CHAPTER 1. INTRODUCTION 1.2. PROBLEM STATEMNET AND . . .

ables full customization of manufactured parts for individuals by scanning

and generating a geometric model of a human body and its respective parts

and then designing customized one of-a-kind products.

It seems important to clearly distinguish between the concepts of a 3D

copier and a 3D scanner. A photocopier takes a piece of paper and pro-

duces another piece of paper just like the original. A 3D copier is a device

which takes a solid object and makes another one of just the same shape

(let us ignore material). In fact, copy machining has been a well established

technology for a long time. A scanner however, in 2D, not only inputs a

page of text into the computer, but can also recognize the characters and

figures, thus providing a text file and graphical structures. Similarly, a 3D

scanner will not only capture raw data from the object, but the data will be

interpreted and some computer model will be created. Now, not only may

a single copy be generated, but knowledge of the shape is obtained, and

thus we can derive new shapes, make variations, analyze properties and

determine characteristic quantities such as volume or surface area. Many

different systems have been proposed for data acquisition; a common char-

acterization subdivides them into contact and non-contact devices [92].

Contact-based acquisition is performed by touching the object surface on

each relevant side. This group of technology are very precise but very slow

and expensive, in addition to begin very difficult to automate. For exam-

ple, a Coordinate Measuring Machine (CMM) requires that the path of

a physical probe be directed in such a manner that it comes into contact

with the part. If the geometry of the part is not known beforehand, this

path must be specified by a human operator, thus increasing the time and

cost needed to measure an object.

Contactless acquisition is performed through indirect techniques based on a

given energy source. Digital cameras or special sensors are used to measure

the return signal. This group of theology have become more ubiquitous be-
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CHAPTER 1. INTRODUCTION 1.2. PROBLEM STATEMNET AND . . .

cause of their low cost and speed in acquisition data and it can further be

categorize as: active sensors and passive sensors.

Active sensors are made by an energy source and a sensor. The source

emits a certain illumination and the sensor acquires the returned pattern

reflected by the object’s surface. The possible type of active sensors in-

clude imaging radar, triangulation, interferometry, active stereo.

Passive sensor use multiple camera systems with natural light and no spe-

cial source of illumination, or a combination of more than one camera

system coupled with some controlled illumination pattern. The possible

type of passive sensors are shape from-X, where X represents the method

used to determine the shape, that is stereo, shading, silhouette, depth from

focused/defocus.

1.2.2 Reverse Engineering

In many area of industry, it is desirable to create geometric models of

existing for which no such model is available. There are several application

areas of reverse engineering. It is often necessary to produce a copy of a

part, when no original drawings or documentation are available. In other

cases we may want to re-engineer an existing part, when analysis and

modifications are required to construct a new improved product.

In areas where aesthetic design is particularly important such as in the

automobile industry, real-scale wood, clay and body models are needed

because stylists often rely more on evaluating real 3D objects than on

viewing projections of objects on high resolution is to generate custom fits

for human request.

The ultimate goal of reverse engineering systems is to realize an intelligent

3D scanner. However, there is a long way to go. Even capturing shape

and translating it into a CAD model is a difficult and complex problem.

In spite of several encouraging partial results in particular areas, a fully
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CHAPTER 1. INTRODUCTION 1.2. PROBLEM STATEMNET AND . . .

automatic solution to build a complete and consistent CAD model is still

a goal.

There is a wide range of applications for which surface construction from

scattered point data is important. However many algorithms have been

developed which interpolate or approximate the input sampled points. The

methods can be divided into four groups:

- Warping

Warping works on the basic idea that we deform some staring surface

to the surface that forms the object[55].

- Incremental surface construction

The methods of incremental surface reconstruction start at some start-

ing simplex(triangle, edge) and other simplices are incrementally added

[86].

- Distance function methods

The distance function describes the shortest distance from the point to

the surface. For closed surfaces, the value of the function is negative

or positive depending on whether the point is inside or outside the

object. This function is computed for each point using the tangent

plane. The plane can be estimated from k-nearest neighbours (points,

the parameter k is set by the user) by the least square approximation

[72].

- Spatial subdivision

The basic feature of the spatial subdivision methods is the boundary

hull (convex hull, box around points, etc.) division to the independent

areas forming e.g. the regular grid, octree or tetrahedra. The surface

is then extracted using the relationship to the surface described by

the input set (e.g. the surface triangles should be small, etc.)[18].
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We used Tight Cocone software for generating triangle mesh form cloud

point [101]. During the surface reconstruction process, a mesh is calculated

from a cloud point. Despite the steady increase in accuracy, most available

scanning techniques cause some deficiencies in the point cloud and set of

holes in triangles meshes. Thus certain repair must be done before taking

these models into actual application.

Various techniques have been proposed to fill holes in the mesh. Existing

approach to fill holes in meshes can be distinguished two main categories:

the geometric and non-geometric approaches. In the chapter four, details

about our original filling hole approach are given. A satisfaction hole filling

method should:

- Run in reasonable time.

- Be enable to patch an arbitrary holes for any model.

- Cover the missing geometry well.

Hole filling process that we implemented is summarized in following steps

[94, 95]. First, holes is identified in triangle mesh and they covered by with

Advance Front Mesh technique. Holes can be identified automatically by

looking close loop of boundary edges. Next, modify the triangles in the

initial patch mesh by estimating desirable normals instead relocating them

directly and rotate triangle by local rotation. Then, Make algorithm more

accurate by re-positioning these coordinate by solving the Poisson equation

according to desirable normal and boundary vertices of the hole. Finally,

Update the coordinate to make the smoothed patch mesh.

1.2.3 Alignment of 3D models

The obtained data from 3D scanning given in arbitrary position and ori-

entation in the space. After obtaining complete 3D model, the result data

8
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must be generated and aligned before taking this models for shape analy-

sis.

The most prominent tool for solving the problem is the Principal Com-

ponent Analysis (PCA) [102], also known as the discrete Karhunen-Loeve

transform, or the Hotelling transform. Principal component aligns a model

by considering its centre of mass as the coordinate system origin, and its

principle axes as the coordinate axes. The purpose of the PCA applied

to a 3D model is to make the resulting shape feature vector independent

to translation and rotation as much as possible. In analysis, instead of

applying the PCA in a classical way (sets of 3D point-clouds) in order

to account different sizes of triangle, we established weights associated to

centre of gravity of triangles [93].

1.2.4 3D comparization

Due to the recent improvement in laser scanning technology, 3D visualiza-

tion and modelling, there is an increasing, 3D visualization and modelling,

there is an increasing need for automatic search for 3D objects in archive.

Our new approach is based on the efficient algorithm for cutting 3D tri-

angle mesh to several sections toward heel and toe. Then the area of each

contour is calculated and compared with area of equal section in shoe last

data base for finding footwear fit [94].

1.3 Thesis Overview

The first chapter has an introductory chapter and consists of three sec-

tions. The general concept of mass customization is presented in section

1.1. Section 1.2, which consists of four subsections, focuses on the topic of

the thesis, analysis 3D scanning data for customize footwear manufacture.

Since triangular mesh is the most common way of representing 3D-object, a

9
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general 3D-model acquisition is explained in subsection 1.2.1. 3D-hole fill-

ing algorithm should fulfill certain criteria, which are defined and discussed

in subsection 1.2.2. Alignment of 3D models are addressed in subsection

1.2.3. Measure of similarity (or dissimilarity)between 3D client’s foot and

shoe last data based are described in subsection 1.2.4.

In the second chapter detailed discussion of mass customization is given.

In particular level of mass customization, success factures of mass cus-

tomization systems and together with footwear research and customization

of footwear will be discussed.

In the third chapter, current 3D-model acquisition using both active

and passive vision techniques. Each technique is explained in terms of its

configuration, principle of operation, and inherent advantages . and limi-

tations. In addition methods for surface reconstruction from scatted point

data will be discussed.

A brief description of the filling holes on surfaces reconstructed from point

clouds is given in fourth chapter.

In the fifth chapter, details about our original pose estimation approach

are given. we will describe the problem of finding the canonical coordi-

nates of a mesh. Since applying the PCA to the set of vertices of a mesh

model can produce undesired normalization results. Thus modifications of

the PCA will be given. Examples as well as an evaluation of the weighted

approach will be described. In additional for Similarity estimation for com-

puterize footwear fit we will be described efficient algorithm for cutting the

triangle mesh model toward heel and toe.

Finally we conclude in sixth chapter by reviewing our work.
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Chapter 2

Mass customization and Footwear

research: An overview

2.1 Introduction

For the last years the concept of mass customization has gained a broad

attention within various branches of industry because the marketing in-

terest is increasingly focused on delivering superior customer. The re-

search area of manufacturing strategy is evolving, calling for a stronger

focus on the manufacturing aspect of companies, and claiming that by

strategically managing the manufacturing function it can become a com-

petitive weapon. As a result, Mass Customization Manufacturing (MCM)

has emerged as a new trend which aims at to provide customized product

and services to individual customers using technology from their customers

through engineering-to-order, product-to-order, or assembly-to-order pro-

duction systems at optimal production efficiency and cost levels.
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2.2 Why customization?

In the natural cycle of industrial evolution order-winner will over time turn

into order-qualifiers . In the 1970’s quality and function were order win-

ners, but during the 1980’s and 1990’s product have become increasingly

uniform regarding attributes such as quality and performance, and thereby

they are turned into order qualifiers. Faced with this challenge manufac-

tures are forced into the search for new parameters of differentiation.

Some manufactures are using mass customization as a tool to escape the

enervating price competition between uniform products. Customization is

one mean by which manufactures strive to differentiate their products in

a world of similarity. Since customers are individual and have different

preferences, there is a fertile soil for development towards personalized and

adoption.

Customization is intended to add increased customer perceived value to

a product, since a customized product (compared to a standard product)

increasingly fulfils the need of its customer. Historically companies have

made a strategies decision on craft production, build-to-order, or mass

production. Within these traditional paradigms, a customer may select

between a customized product with a high price and standardized product

at low cost.

With the emergence of mass customization the added value of customiza-

tion should now be manufactured with no or only little extract cost. The

differentiation is, however, only effective (i.e. the product is sold) if the

customers considers customization to be of value.

When looking at the customized product value generated from variation

to be considered firstly. Authors in [82] have set up some basic question

regarding customer orientation helping to define the value of mass cus-

tomization:
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- Do the customers really have unique needs?

- Do the customers really care about more customization of their prod-

ucts/services?

- Do they really want more choices or will they be overwhelmed by large

variety?

Thus the goal of the customization process must be the reduction of the

customer sacrifice and cost through the customization process. The man-

ufactures must help the customer to configure the right product, since the

manufactures holds the most knowledge of the products and its utilization

and thereby can eliminate uncertainty.

2.3 The product process matrix

The process life cycle has been attracting increasing attention from business

managers and researchers [57]over the past several years. Just as a product

and market pass through a series of major stages, so does the production

process used in the manufacture of that product.

The process evolution typically begins with a ”fluid” process-one that is

highly flexible, but is not very cost efficient and proceeds toward increasing

standardization, mechanization, and automation.

- The rows of this matrix represent the major stages through which a

production process tends to pass in going from the fluid form in the

top row to the systemic form in the bottom row.

- The columns represent the product life cycle phases, going from the

great variety associated with startup on the left-hand side to stan-

dardized commodity products on the right-hand side.
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- Two corners in the matrix are void of industries or individual compa-

nies.

- The upper right hand corner characterizes a commodity product pro-

duced by a job-shop process that is simply not economical. Thus there

are no companies or industries located in that sector.

- Similarly, the lower left-hand corner represents a one-of-a-kind prod-

uct that is made by continuous or very specific process. Such process

are simply too inflexible for such unique product requirements.

Figure 2.1: Matching major stages of product and process life cycles
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2.3.1 Diagonal position

A business unit within a diversified company can be characterized as oc-

cupying a particular region in the matrix, determined by the stage of the

product life cycle and its choice of production process for that product.

Typical of a company positioned in the upper left-hand corner is a com-

mercial printer. In such a job shop, jobs arrive in different forms and

require different tasks, the equipment tends to be relatively general pur-

pose and the workers typically have a wide range of production skills, and

each job takes much longer.

Further down the diagonal in this matrix, the manufacturer of heavy equip-

ment usually chooses a production structure characterized as a ”discon-

nected line flow” process. Although the company may make a number of

products (a customer may even be able to order a somewhat customized

unit), economies of scale in manufacturing usually lead such companies to

offer several basic models with a variety of options. This enables manu-

facturing to move from a job shop to a flow pattern in which batches of a

given model proceed irregularly through a series of work stations, or pos-

sibly even a low volume assembly line.

Even further down the diagonal, for a product like automobiles or ma-

jor home appliances, a company will generally choose to make only a few

models and use a relatively mechanized and connected production process,

such as a moving assembly line. Such a process matches the product life

cycle requirements that the automobile companies must satisfy with the

economies available from a standardized and automated process.

Finally, down in the far right-hand corner of the matrix, one would find

refinery operations, such as oil or sugar processing, where the product is

a commodity and the process is continuous. Although such operations

are highly specialized, inflexible, and capital intensive, their disadvantages
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are more than offset by the low variable costs arising from a high volume

passing through a standardized process.

2.4 Level of mass customization

There are many methods to achieve mass customization [103]. Based on

an analysis of existing framework to categorize the various levels of cus-

tomization of product, Da Silverira et al.[97] proposed a set of eight generic

levels of mass customization, ranging from pure customization (individu-

ally designed products) to pure standardization, see table 1.

Generic Approach by Starategies by Satge by Types by

Levels Cilmore&Pine Lampel&Mintzberg Pine Spira

[34] [68] [78] [100]

1. Standardization Pure

standardization

2. Usage Adaptive Embedded

customization

3. Package and Cosmetic Segmented Customized

Distribution standardization packaging

4. Additional Customized services; Providing additional

Services quick response services

5. Additional point of delivery performing additional

Custom work customize custom work

customized modular Unique config, out of

6. Assembly standardization production standard components

7. Fabrication tailored

customization

8. Design collaborative; pure

transparent customization

Table 2.1: Generic Level of mass customization

- Design

Design as the level 8 refers to collaborative product development, man-

ufacturing and delivery of products according to individual customer

preferences.

- Fabrication

The next level which is fabrication refers to manufacturing of customer-

tailored products based on predefined designed.

- Assembly

16



CHAPTER 2. MASS . . . 2.5. SUCCESS FACTURE OF MASS . . .

Assembly as the level 6 deal with the arranging of modular compo-

nents into different configurations according to customer orders.

- Additional service and custom work

On the level 5 and 4, mass customization is achieved by simply adding

custom work or services to standard products (often at the point of

delivery).

- Package and Distribution

In the level 3, MC is provided by alternative approaches for distribut-

ing or packaging of products (e.g. different labels and/or box sizes

according to specific market segments).

- Usage

In level two, mass customization occurs only after delivery, through

products that can be adapted to different functions and situations.

- Standardization

The level 1 refers to pure standardization of a strategy which can be

useful in many industrial segments.

2.5 Success facture of mass customization systems

The ultimate success of mass customization depends on the perceived value

of buying mass-customized products to mass-produced ones. Thus the

success of mass customization in defined as the ability to provide supe-

rior customer value in contrast to mass manufacturer’s offerings - through

customization on a mass scale. Authors in [103] introduced the mass cus-

tomization which is able to enhance customer loyalty by enabling the foun-

dation of relationships through customer knowledge. However, this is only

case when the frequency of purchasing is high.
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Perceived customer value plays an important role in achieving sustainable

competitive advantage [110]; it relates to customer perception of relative

performance. The literature has often described perceived customer value

as a trade-off between quality and price. The success of MC system de-

pends on a series of external and internal factors.

2.5.1 Customer demand for variety and customization must ex-

ist

The need to deal with increasing customer demand for innovation and

customized products is the fundamental justification for MC [69]. The

success of MC depends on the balance between, on the potential sacrifice

that customers make for MC products and the company’s ability to produce

and deliver individualized products.

2.5.2 Product should be customized

Independent units that can be assembled into different forms compose a

modular products [27]. Successful MC products must be modularized, ver-

satile and constantly renewed. Although modularity is not the fundamental

characteristic of MC (true MC products are individually made), it enables

simpler and lower-cost manufacturing of products with similar effective-

ness compared to the true customization. Also, MC processes needs rapid

product development and innovation capabilities due to typical short life

cycles presented by MC products.

2.5.3 Technology must be available

The implementation of Advanced Manufacturing Technologies (AMTs) is

a fundamental step to enable the development of MC systems [61]. One

could argue that the early concept of MC appeared only after some compa-
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nies were able to successfully integrate a series of information and process

flexibility technologies. MC is one of the best opportunities offered by coor-

dinated implementation of AMTs and Information Technology (IT) across

the value chain.

2.5.4 value chain should be ready

MC is a value chain-based concept. Its success depends on the willing-

ness and readiness of suppliers, distributors, and retailers to attend to the

system’s demands. The supply network must be at close proximity to the

company to deliver raw materials efficiently [28]. Most important manufac-

turers, retailers and other value chain entities must be part of an efficiently

linked information network [39].

2.5.5 Market conditions must be appropriated

According to Kotha [65], a company’s ability to transform MC potential

into actual competitive advantage greatly depends on the timing of this

development. In other words, being the first to develop an MC system

can provide substantial advantage over competitors, since the company

may get well entrenched in this position and start being seen by people as

innovative and customer-driven.

2.5.6 Knowledge must be shared

MC is a dynamic strategy and depends on the ability to translate new cus-

tomer demands into new products and services. To achieve that, companies

must pursue a culture that emphasizes knowledge creation and distribu-

tion across the value chain. That requires the development of dynamic

networks along with manufacturing and engineering expertise [66], and

in-house development of new product and process technologies [65].
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2.6 Footwear Customization

Research indicates that customer focus can influence todays business. With

growing product variety and opportunities in ecommerce, the old paradigm

of mass production becomes sluggish especially when there is a change of

the business paradigm from producer-centered productivity to consumer-

centered customization. Mass customization begins with understanding

individual customer requirements and ends with the fulfillment process of

satisfying the target customer with near mass production efficiency.

By breaking down the product features into components and offering those

components to the consumer as choices, customization of the whole or part-

product is possible. Historically, there has been a trend to introduce prod-

uct variety which covers varying consumer tastes and styles. For example,

from 1970 to 1988, the number of running shoe models increased from 5 to

over 285 (167 men and 118 women) [14]. In order to keep pace with ever

changing customer tastes, thousands of new products are made annually

and with each variation, manufacturers attempt to bring products closer

to what the customer needs. Even though variety matters to consumers,

each product variety may have a differing meaning to different consumers

[34].

Hence, allowing a customer to choose one product from a ”shelf” can be

wasteful and can also constrain a customer’s ultimate satisfaction even

though a store shelf may have great marketing appeal [107]. The difficulty

of selecting the right pair of shoes in a shoe store is a classic example. Mass

customization means to generate these ”right” products in order to fulfill

customer’s needs at different levels [99, 83, 37]. The footwear industry can

adopt this methodology for the next generation of footwear manufacturing

and product design, see figure2.2.
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Figure 2.2: Footwear customization

2.7 Foot shape and shoe last

2.7.1 Foot shape

The human foot is an unsymmetrical object that has great flexibility and

it supports the body and helps us to keep balance and to move forward or

backward. There are 26 bones in each foot. The top view of foot bones

is illustrated in Figure 2.3. In terms of functions, the foot bones can be

categorized into three groups: the malleolus bones, the metatarsal bones

and the phalanges. The malleolus bones are also called the tarsal bones,

which are located at the back part of foot.

- Ectomorph: tall, slender, long-boned, slim-muscled.

- Mesomorph: stocky, muscular, heavy-boned.

- Endomorph: fleshy, plump, small-boned, fatty.
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Nobodys physical shape is entirely any one of the above categories, but is

usually a combination of all three, one type in the combination is dominant.

Since, the foot type is in the same category as the body type, some of

the subject demographic may play an important role when attempting to

understand foot shape.

Figure 2.3: I) Phalanges. II) Metatarsas. III) Malleolus; tarsal 1) inner, 2) middle, 3)

outer, 4) navicular, 5) cuboid 6) talus, 7) calcaneus

2.7.2 Shoe last

The shoe last is a wooden or metal model of human foot on which shoes

are shaped. The design of new shoe last mainly determines the shoe shape,

fashion, fit and comfort qualities [21, 22]. ”A good last for shoe production

has the same importance as a good foundation for a stability of a house”

[23]. The last furnishes support and protection to the foot if properly

constructed [24]. The key steps in the manufacture of a shoe last are:

- Data related to the foot, shoe fabrication materials, style, comfort and
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type of construction should be collected.

- According to above data and the last maker’s knowledge the last will

be designed.

- A rough model according to design parameters will be made.

- The rough model turns into a finished last.

- To check the finished last if it is of the required dimensions.

Shoes are subordinate to the feet and are bound to protect them. As

the mold for shoe making, the shoe last should be designed in accordance

to the foot shape. A thorough understanding of the foot structure and

its biomechanical characteristics is important for foot measurement, last

design, and shoemaking. The foot shoe last triangle are introduced in

figure 2.4.

Figure 2.4: Foot Shoe last triangle

2.8 Footwear comfort and fit

The importance of product compatibility for comfort and satisfaction is

well known. Fit is considered to be very importance since mis-fitting shoes
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are generally the major cause of foot related illnesses and injuries. Properly

fitting footwear are important in avoiding foot discomfort, deforming and

are essential in patient with arthritis, diabetes, and other foot disorders.

For instance Hallux Valgue, Ankle Valgus and lesions (Chilblains, bilister,

Corns, Calluses) are some of the foot deformation related to footwear [49].

Hallux Valgus is associated with abnormal pressure at the metatarsopha-

langial joints (MPJ) of the great toe and is caused by footwear that is too

narrow. The joint separation is enlarged and there may be information of

bursa at joint. Moreover the first metatarsal may be deflected away from

the other metatarsals when the first toe overlap or underlie the second toe

and bursa can be inflamed and then it is known as bunion.

The footwear squeezes the toes together. Ankle Valgus may not be painful

in itself but it is caused by the inward rotation (toward the medial sides)

of the back of foot such that the body weight falls on the inner side of

the foot. In this case the arch apparently flattens. The condition is self-

aggravating, since the more the foot twists the more the weight falls on the

inner side of the foot.

Callouses, corns, blisters and chilblains belong to the deformities known

as lesions. When there is intermittent pressure at some part of the foot

Callouses will be occurred and this causes the outer skin to thicken and

become hard. However, when the Callouses are under pressure pain and

burning sensation will happen.

Friction associated with localized pressure causes Corns occur over toe

joints. Blisters are caused by friction, when the outer skin becomes loose

and fluid collects beneath it. If the friction continues, the blister breaks

causing an inflamed area. This occurs normally at the back of heel due to

heel slip. Chliblins are caused due to pressure normally at the back of heel

in cold weather.

When the dimensional differences are comparatively large the shoe can be

24



CHAPTER 2. MASS . . . 2.9. FOOTWEAR RESEARCH

either tight or loose depending upon the relative location of foot with that

of the shoe. Loose shoes (even thought function may be impaired) are not

as uncomfortable as when the shoes are tight. When the shoe is tight, the

pressure and force will produce compression which may result in discom-

fort, pain or injury. On the other hand, loose shoe causes discomfort, pain

or even injury due to the friction between the shoe and foot. Thereby,

ill-fitting shoes are generally associated with injuries and foot deformities

[30,31,32] and by improving footwear fit stretching of the upper material

will be reduced [33]. Thus properly constructed footwear may provide the

right pressure and force at the different locations on the foot surface, and

this may result in improved comfort, fit and foot health.

2.9 Footwear research

The issue of good shoe fit was posed as early as 1500 B.C. in ” Ebers

Payyrus”. Researcher at the beginning gave attention on the relationships

between biomechanical variable and the kinematics analysis of foot [108].

Most of the initial work was done on running, typical idea was that sport

shoes should be built to reduce impact loading and to control (≈ reduce)

foot and to guide take-off inversion. It was suggested that these functions

would reduce movement-related injuries.

Researchers results and their tests were responsible for sport shoes that

were developed into relatively bulky constructions with rigid heel counter,

stiff heel stabilizers and wide lateral heel wedges, which may have been

responsible for new problems and injuries.

In 1964 the anthropometric research in Taiwan organized several investi-

gation regarding length and width of foot. From 1980 to 1982 [74], China

organized several research about relationship between various features of
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the foot, sole design and the size specification of the shoe last.

From 1982 to 1986 the main research topic included marketing research,

function and quality study of sport swears and particularly, the static and

dynamic tests and analysis of the foot. From 1986 to 1990, measurement

techniques were improved but the measurement items seemed Not to be

adequate.

A study on the incidence of fitting problems in footwear found that, for

both men and women, tight fit was a problem in 22% of the items reported,

width in 20%, narrow toes in 19%, arches in 14%, and sloppy fit in 9% [12].

Length was not a problem except for those people with very short or very

long feet.

Unlike any other consumer product, personalized footwear or the matching

of footwear to feet is not easy if delivery of comfortable shoes is to be the

ultimate goal, even though footwear related discomfort is predominantly

caused by localized pressure induced by a shoe that has a design unsuitable

for that particular shape of foot.

The design of shoe last, which represents approximate shape of human foot

is the ”heart” of shoemaking because it mainly determines the foot shape,

fit and comfort qualities. Because of the complexity and the constraints

imposed by the footwear manufacturing process, most importantly, the last

manufacturing process, the custom footwear is expensive to produce.

In traditional manufacturing, the device such as the Ritz Stick device [85],

the Brannock device [8], the Scholl device [40], caliper and tape are always

used for measurement of foot dimensions.

The process of foot measuring and making an accurate customer shoe last

was always complicated and time consuming because the shoe maker must

manually measure the specific consumer’s foot and the last manufactured

by last maker experience.

Nowadays, with development of 3D acquisition devices, automatic process,
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producing custom-tailored footwear is reasonable, if the custom last can

be automatically produced based on consumer’s foot shape. There are al-

ready some approaches in literature [35, 73, 63]. The typical suggestion

coming from literature is selecting a shoe last from a shoe last data base

or deforming it into one that fits the scanned foot data. Authors in [87],

quantify footwear fit and predict the fit-related comfort with colourcode

mismatch between human foot and shoe last. Li and Jneja [35], suggested

to store front and back part of shoe last separately, to generate smooth

surface between two given disjoined surfaces of the front and rear parts of

the shoe last to obtain the new shoe last. This method is helpful for com-

panies which already maintain library of last rear parts, so they need only

front parts of last shapes to be designed as fashion suggests. However, this

method for custom tailored footwear designing is not very accurate because

the consumers feet may change from time to time.
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Chapter 3

Reconstruction of 3D model from 3D

scanning data

3.1 Introduction

The problem of creating a CAD model for an existing physical object from

a given set of points of the surface is important in many fields of science

and industry. There are many methods available for solution of this prob-

lem. These methods are based on a great variety of principles, and have

various properties, that in many cases allows choosing the most suitable

algorithm for a given task.

In order to reconstruct complete 3D shape of object/scene, whole range

data of the surface should be acquire in advance. Many types of range

finders used for surface reconstruction are based on stereoscopic vision

[13], laser scanning [51], time-of-flight laser [3], pattern projection [91].

Due to occlusions and limitation to field of view of the sensors the entire

object can not capture at once. There for, in order to acquire whole range

data of the surface, multiple range images which are represented different

parts of the same object are fused. In order to register multiple images,

Euclidean motion between views must be determined. After solving regis-

tration problem, the data must fuse into single shape, e.g., a dense triangle
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mesh for further processing [92].

3.2 Acquistion Techniques

Fast, inexpensive and accurate 3D acquisition systems has evolved consid-

erably in the last few years. Depending on the technique used the output

of a scanning process can be simply a set of points, unstructured data,

profile, range image or volumetric output (structured data), figure 3.1, is

shown different output of scanning process. Many different systems have

Figure 3.1: Out of a scanning process. a) Point. b) Profile. c) Range image. d) Volumetric

output

been proposed; a common characterization subdivides them into contact

and non-contact devices. An important subclass of the latter is one based

on the adoption of optical technology, and it can be further subdivided

into active and passive approaches, see figure 3.2.

3.2.1 Practical problems of data acquisition

There are many practical problems with acquiring useable data, the major

ones being:
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Figure 3.2: The classification of the surveyed acquisition methods

- Calibration.

- Accuracy.

- Accessibility.

- Occlusion.

- Fixturing.

- Muttiple views.

- Noise and imcomplete data.

- Statistical distribution of parts.

- Surface finish.

Calibration is an essential part of setting up and operating a position mea-

suring device. Systematic sensing errors can occur through lens distortions,

non-linear electronics in cameras, and similar sources. Most of the papers
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cited present some discussion of accuracy ranges for the various types of

scanners, but all methods of data acquisition require accurate calibration.

Optical scanners’ accuracies typically depend largely on the resolution of

the video system used. Distance from the measured surface and accuracy

of the moving parts of the scanning system all contribute to the overall

measurement error.

Accessibility is the issue of scanning data that is not easily acquired due

to the configuration or topology of the part. This usually requires multi-

ple scans but can also make some data impossible to acquire with certain

methods. Through holes are typical examples of inaccessible surfaces.

Occlusion is the blocking of the scanning medium due to shadowing or

obstruction. This is primarily a problem with optical scanners. However,

acoustic and magnetic scanners may also have this problem. Multiple

scanning devices are one approach to obviate this problem. As well as self-

occlusion, occlusion may also arise due to fixturing/typically parts must

be clamped before scanning.

The geometry of the fixtures becomes a part of the scan data. Elimination

of fixture data is difficult and often requires multiple views. Multiple views

introduce errors in acquired data because of registration problems. Noise

elimination in data samples is a difficult issue. Noise can be introduced

in a multitude of ways, from extraneous vibrations, specular reflections,

etc. There are many different filtering approaches that can be used. An

important question is whether to eliminate the noise before, after, or dur-

ing the model building stage. There are times when the noise should not

be eliminated at all. Noise filtering, though, is often an unavoidable step

in reverse engineering, but note, that this also destroys the ”sharpness” of

the data i.e. typically sharp edges disappear and are replaced by smooth

blends, which in some cases may be desirable, but in other cases may lead

to serious problems in identifying features [7]
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A similar problem is restoration of missing data. This is partly necessary

due to the above mentioned inaccessibility and occlusion problems. More-

over, because of the nature of optical and even tactile scanning, the data

close to sharp edges is also fairly unreliable. Finally there are situations

where only parts of a certain surface can be measured, there are missing

parts or parts obscured by other elements, but we need to reconstruct the

whole surface from just the visible parts.

Statistical distribution of parts deals with the fact that any given part

which is scanned only represents one sample in a distributed population.

When reverse engineering methods attempt to reproduce a given shape,

the tolerance distribution of the scanned part must be considered. This

gives rise to multiple part scans and the averaging of the resulting data.

However, it may be somewhat impractical to attempt to sample many parts

from a population, and indeed, often only one is available.

The final issue we bring up is surface finish of the part being measured.

Smoothness and material coatings can dramatically affect the data acqui-

sition process. Tactile or optical methods will produce more noise with a

rough surface than a smooth one. Reflective coatings also can affect optical

methods. When scanning human faces noise is often introduced when the

light reflects of the eye or spectacles. Hair is an example of a rough surface

which presents very difficult problems in scanning.

Imagine an ideal scanner: the object is ’floating’ in 3D space, so it is ac-

cessible from all directions. The data is captured in one coordinate system

with high accuracy, with no need for noise filtering and registration. Pos-

sibly, the measurement is adaptive, i.e. more points are collected at highly

curved surface portions, etc.
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3.2.2 Contact-Based Acquisitions

Acquisition based on contact is performed by touching the object on each

relevant side. Recently, the use of contact-based technique has been limited

due to the concerns arising when dealing with fragile or precious objects

such as artifacts. These technologies have a number of disadvantages such

as deforming the object during operations, errors in the estimations of the

shape, not providing information on the object appearance. Moreover,

this group of techniques are very slow. Contact-based techniques can be

further classified into two main groups: destructive techniques, including

slicing, and non-destructive techniques, like Jointed arms and Coordinate-

measuring machine(CMM), see figure 3.3.

Figure 3.3: Example of contact based system

3.2.3 Contactless Acquisitions

Contactless acquisition, is performed through indirect techniques based on

the a given energy source. Digital camera or special sensors are used to

measure the return signal. This group of techniques have some advan-

tages. In fact the shape can obtained in the present of delicate objects,

hot environment, large scene, deformable objects, etc. Optical - and laser-

based technologies are the most used in this class. This class of technique
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can be further classified in two main groups, reflective and transmissive

techniques.

Transmissive technologies are based computer tomography. This method

is based on X-rays, is widely used in medical imaging. Other Transmis-

sive scanners are based on time of flight lasers, is used in long distance

measurement such as hundreds of meters or many kilometers. Non-optical

techniques, such as sonars or microwave radars, are mainly used in robotics.

Additionally, optical techniques can be sub-divided into two types, passive

sensors and active sensors.

3.2.3.1 Passive scanners

In passive vision technique, no energy is emitted but instead rely on de-

tecting the radiation reflected by objects. This scanner are simple to use

because they do not need any special hardware. On the contrary, the qual-

ity and accuracy of the produced model can be quite low.

Such passive technique include shape from-X, where X represents the method

used to determine the shape, such as: stereo, shading, texture, depth from

focus/defocus, among others. 3D information recovery from only a single

2D image is difficulty of its group and it forms an ill-posed problem. The

table 3.1, below, gives an overview of shape from X methods.

Stereo vision techniques

Stereo vision (or ”stereopsis”) is the process of recovering the three −
dimensional location of points in the scene from their projection in the

images. More precisely, if we have two images Il and Ir (left and right

from the left and right eyes), given a pixel pl in the left image and the

corresponding pixel pr in the right image, then the coordinates (X,Y,Z) of
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Shape from How many images Method type

Stereo 2 or more Passive

Motion A sequence Active/Passive

Focus/Defocus 2 or more Active

Zoom 2 or more Active

Contours Single Passive

Texture Single Passive

Shading Single Passive

Table 3.1: Shape− from−X methods and their classification

the corresponding point in space is computed.

Geometrically, given pl, we know that the point P lies on the line Ll joining

pl and the left optical center Cl (this line is the viewing ray), although we

don’t know the distance along this line. Similarly, we know that P lies

along a line Lr joining pr and P. Assuming we know exactly the parame-

ters of the cameras (intrinsic and extrinsic), we can explicitly compute the

parameter of Ll and Lr . Therefore, we can compute the intersection of

the two lines, which is the point P, see figure 3.4. This procedure is called

triangulation.Thus stereovision involves two problems:

- Correspondences: Given a point p1 in one image, find the correspond-

ing point in the other image.

- Reconstruction: Given a correspondence (pl, pr), compute the 3 − D
coordinates of the corresponding point in space, P.

Shape from texture

Shape from texture is a computer vision technique where a 3D object

is reconstructed from a 2D image. The first person who proposed that a

shape can be perceived from a texture was Gibson in 1950 [54]. Gibson

used the term texture gradient in order to denote that areas of a surface
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Figure 3.4: StereoV ision = Correspondences+Reconstruction

that have similar texture, with other neighbor areas, are perceived differ-

ently from the observer due to differences in orientation of the surfaces and

the distance from the observer. In order to measure the orientation of the

texels in a texture, we need to find the slant and tilt angles. Slant denotes

the amount and tilt denotes the direction of the slope of the planar surface

projected on the image plane. In figure 3.5 the angle ρ between zs and zi

is the slant angle while the angleτ between Xi and the projection of the

surface normal ZS onto the image plane is the tilt angle.
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Figure 3.5: Coordinate relationship between the image plane and the surface plane

3.2.3.2 Active scanners

Scanner based on traingulation

Where the object geometry is reconstructed by the use of three information:

the pattern emission direction and the relative positions of both source and

sensor. Either laser sources or light sources can be used as pattern emission

sources. These systems reach a good level of accuracy, measuring many

points in a small area and returning a 3D points cloud (x,y,z coordinates).

Triangulation scanner usually have shading problem, due to the separation

of light source and detector, parts of non-convex objects may not be reach

by light from the projector or may not be seen by the detector . Thus

triangulation scanner usually have shading problems. The basic geometry

for an active triangulation system is shown in Figure 3.6. A light projector

is placed at a distance b (called baseline) from the centre of projection of

a pin-hole camera. The centre of projection is the origin of the reference

frame XYZ, in which all the sensor’s measurements are expressed. The Z

axis and the camera’s optical axis coincide. The y and Y , and x and X

axes are respectively parallel but point in opposite directions.

Let f be the focal length. The projector emits a plane of light perpendicular
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Figure 3.6: The basic geometry of active, optical triangulation (planar XZ view). The Y

and y axes are perpendicular to the plane of the figure.

to the plane XZ and forming a controlled angle,θ with the XY plane. The

Y axis is parallel to the plane of light and perpendicular to the page, so

that only the profile of the plane of light is shown. The intersection of the

plane of light with the scene surfaces is a planar curve called the stripe,

which is observed by the camera. In this setup, the coordinates of a stripe

point P = [X, Y, Z]T are given by:


x

y

z

 =
b

fcotθ − x


x

y

z

 (3.1)

Applying this equation to all the visible stripe points, we obtain the 3-D

profile of the surface points under the stripe (a cross-section of the sur-

face). We can acquire multiple, adjacent profiles by advancing the object

under the stripe, or sweeping the stripe across the object, and repeat the

computation for each relative position of stripe and object. The sequence

of all profiles is a full range image of the scene.

39



CHAPTER 3. RECONSTRUCTION . . . 3.2. ACQUISTION TECHNIQUES

A slightly diferent tringulation device, called single point laser scanner do

exist. The principle is to project a narrow laser beam (instead of a laser

line) on the surface of the object being scanned. The produces a spot

on the surface that will be imaged at different position in the CCD ar-

ray, depending on the range. The 3D position can be recovered using the

same triangulation principle as above. Figure 3.7 present different kind of

triagualtion scanners.

Figure 3.7: Taringualtion: Moveing the camera and Illumination

Imaging radar

Recently a new class of scanning methods, called imaging radar, is be-

coming popular. This class can be divided in two main sub-classes:

- Time of flight.

- Amplitude modulation.

The basic principle of these sensors is to emit a short electromagnetic or

acoustic wave, or pulse, and detect the return (echo) reflected from sur-

rounding surfaces. Distance is obtained as a function of the time taken

by the wave to hit a surface and come back, called time of flight, which

40



CHAPTER 3. RECONSTRUCTION . . . 3.2. ACQUISTION TECHNIQUES

is measured directly. By sweeping such a sensor across the target scene, a

full range image can be acquired. Different principles are used in imaging

laser radars; for instance, such sensors can emit a amplitude-modulated

laser beam and measure the phase difference between the transmitted and

received signals.

3D scanners based on imaging radar are preferred when scanning large

structures [6], as range accuracy is usually relatively constant for the whole

volume of measurement. In particular many companies are offering prod-

ucts and services for topographic surveys. The measurements carried with

this class of instuments will be affected by drifts and jitter in the electron-

ics, as since these systems require detection of the time light propagates

through the air. In the following we give a brief introduction to the two

calsses of methods, more details can be found in [59].

Time of flight scanner

Time of flight (TOF) technique, computer the distance to the surface by

timining the round-trip of the light puls. A laser is used to emit a light

puls and the amount of time that passes before the refletcted light is seen

by the detector is timed. Since the speed of light is known, the round-trip

time determines the travel distance of light, which is twice the distance be-

tween the scanner and the surface. The advantages of this group of sensors

compare to traingulation is included offering greater operation range (up

to tens of metters), which is vaiuable in outdoor navigation tasks. Howvere

these scanner speed is considerably slower than traingulation, see figure3.8.

Ampliude Modulation

Amplitudet modulation techniques are based on a continuse laser impulse
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Figure 3.8: Time of flight scanner

that is modulated sinusoidally over the time. After the beam bounces on

the object and returns back to the sensor, the signal presents a sinusoidal

variation over the time, but out of phase with respect the emitted signal.

The roundtrip distance to the object surface is measured by computing

the phase differenet between the emitted and the reflected power signals.

It can be siad [15] that amplitude modulation system may offere a better

range resolution (0.3 mm), but however it generates an ambiguity interval

problem (phase multiple of Π), see Figure 3.9

Figure 3.9: A laser range-finder based on amplitude modulation
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3.3 Recosrtuction of surface from 3D Data Points

There is a wide range of applications for which surface construction from

scattered point data is important. In particular. depending on the field of

application and the related properites of the data, many algorithms were

developed in past. the problem treated in this contribution is Surfaces

from scattered point data.

Input. A set P of points in space which are sampled from the surface.

Output. A surface S so that the points of P lie on or close to S.

Figure 3.10: The initial point set (left) and the desired reconstruction result (right)

3.3.1 Spatial subdivision

Common to the approaches that can be characterized by ”Spatial Sub-

division” is that some bounding box of the set P of sampling points is

subdivided into disjoint cells. There is a variety of spatial decomposition

techniques which were developed for different applications [109]. Typi-

cal examples are regular grids, adaptive schemes like octrees, or irregular

schemes like tetrahedral meshes. Many of them can also be applied to
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surface construction. The goal of construction algorithms based on spatial

subdivision is to find cells related to the shape described by P. The selec-

tion of the cells can be done in roughly two ways: surface-oriented and

volume-oriented.

3.3.1.1 Surface-oriented cell selection

The surface-oriented approach consists of the following basic steps. Surface-

oriented cell selection:

1- Decompose the space in cells.

2- Find those cells that are traversed by the surface.

3- Calculate a surface from the selected cells.

The approach of Algorri and Schmitt

An example for surface-oriented cell selection is the algorithm of Algorri

and Schmitt [71] figure ( 3.11). For the first step, the rectangular bound-

ing box of the given data set is subdivided by a regular voxel grid. In

the second step, the algorithm extracts those voxels which are occupied

by at least one point of the sampling set P. In the third step, the outer

quadrilaterals of the selected voxels are taken as a first approximation of

the surface. This resembles the cuberille approach of volume visualization

[33].

In order to get a more pleasent representation, the surface is transferred

into a triangular mesh by diagonally splitting each quadrilateral into two

triangles. The cuberille artifacts are smoothed using a depth-pass filter

that assigns a new position to each vertex of a triangle. This position is
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Figure 3.11: The approach of Algorri and Schmitt

computed as the weighted average of its old position and the position of

its neighbors. The approximation of the resulting surface is improved by

warping it towards the data points.

The approach of Hoppe et al.

Another possibility of surface-oriented cell selection is based on the distance

function approach of Hoppe [43, 44, 45](figure3.12). The distance function

of the surface of a closed object tells for each point in space its minimum

signed distance to the surface. Points on the surface of course have dis-

tance 0, whereas points outside the surface have positive, and points inside

the surface have negative distance.

The first step of the algorithm again is implemented by a regular voxel grid.
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The voxel cells selected in the second step are those which have vertices

of opposite sign. Evidently, the surface has to traverse these cells. In the

third step, the surface is obtained by the marching cubes algorithm of vol-

ume visualization [109]. The marching cubes algorithm defines templates

of separating surface patches for each possible configuration of the signs of

the distance values at the vertices of a voxel cell. The voxels are replaced

with these triangulated patches. The resulting triangular mesh separates

the positive and negative distance values on the grid.

A similar algorithm was suggested by Roth and Wibowoo [38]. It differs

from the approach of Hoppe et al. Furthermore, the special cases of profile

lines and multiple view range data are considered besides scattered point

data.

A difficulty with these approaches is the choice of the resolution of the

voxel grid. One effect is that gaps may occur in the surface because of

troubles of the heuristics of distance function calculation.

Figure 3.12: The approach of Hoppe et al.

The approach of Bajaj, Bernardini et al.
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The approach of Bajaj, Bernardini et al. [10] differs from the previous

ones in that spatial decomposition is now irregular and adaptive.

The algorithm also requires a signed distance function. For this purpose,

a first approximate surface is calculated in a preprocessing phase. The

distance to this surface is used as distance function.

Having the distance function in hand, the space is incrementally decom-

posed into tetrahedra starting with an initial tetrahedron surrounding the

whole data set. By inspecting the signs of the distance function at the

vertices, the tetrahedra traversed by the surface are found out. For each

of them, an approximation of the traversing surface is calculated. For

this purpose, a Bernstein-B’ezier trivariate implicit approximant is used.

The approximation error to the given data points is calculated. A bad

approximation induces a further refinement of the tetrahedrization. The

refinement is performed by incrementally inserting the centers of tetrahe-

dra with high approximation error into the tetrahedrization. The process

is iterated until a sufficient approximation is achieved.

In order to keep the shape of the tetrahedra balanced, an incremental tetra-

hedrization algorithm is used so that the resulting tetrahedrizations always

have Delaunay property. A tetrahedrization is siad to have the Delaunay

property if none of its vertices lies inside the circumscribed sphere of any

of its tetrahedron [31].

The resulting surface is composed of trivariate implicit Bernstein-Bezier

patches. A C1 smoothing of the constructed surfaces is obtained by apply-

ing a Clough-Tocher subdivision scheme.

In Bernardini et al. [26] an extension and modification of this algorithm

is formulated [11, 25]. The algorithm consists of an additional mesh sim-

plification step to reduce the complexity of the mesh represented by the

α-solid [9]. The reduced mesh is used in the last step of the algorithm

for polynomial-patch data fitting using Bernstein-Bezier patches for each
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triangle(by interpolating the vertices and normals and by approximating

data points in its neighborhood). Additionally, the representation of sharp

features can be achieved in the resulting surface.

Edelsbrunner’s and Mcke’s Alpha-shapes

Edelsbrunner and Mcke [42, 41] also use an irregular spatial decomposition.

In contrast to the previous ones, the given sample points are part of the

subdivision. The decomposition chosen for that purpose is the Delaunay

tetrahedrization of the given set P of sampling points. A tetrahedriza-

tion of a set P of spatial points is a decomposition of the convex hull of

P into tetrahedra so that all vertices of the tetrahedra are points in P.A

tetrahedrization is a Delaunay tetrahedrization if none of the points of P

lies inside the circumsphere of a tetrahedron. It is well known that each

finite point set has a Delaunay tetrahedrization which can be calculated

efficiently [34]. This is the first step of the algorithm.

The second step is to erase tetrahedra, triangles, and edges of the Delau-

nay tetrahedrization using so-called α-balls as eraser sphere with radius

α. Each tetrahedron, triangle, or edge of the tetrahedrization whose corre-

sponding minimum surrounding sphere does not fit into the eraser sphere is

eliminated. The resulting so-called α-shape is a collection of points, edges,

faces, and tetrahedra.

In the third step, triangles are extracted out of the α-shape which belong

to the desired surface, using the following rule. Consider the two possible

spheres of radius α through all three points of a triangle of the α-shape. If

at least one of these does not contain any other point of the point set, the

triangle belongs to the surface.

A problem of this approach is the choice of a suitable α. Since α is a global
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parameter the user is not swamped with many open parameters, but the

drawback is that a variable point density is not possible without loss of

detail in the reconstruction.An example for reconstruction of a body is

shown in figure 3.13

Guo et al.[5] also use make of α −shapes for surface reconstrcution but

they propose a socalled visibility algorithm for extracting those triangles

out of the α −shapes which represent the simplicial surface.

Figure 3.13: An example for a reconstruction of a body. If α is too small, gaps in the

surface can occur, or the surface may become fragmented.

Attali’s Normalized Meshes

In the approach of Attali [16], the Delaunay tetrahedrization is also used

as a basic spatial decomposition. Attali introduces so-called normalized

meshes which are contained in the Delaunay graph.It is formed by the

edges, faces and tetrahedra whose dual Voronoi element intersects the sur-

face of the object.

In two dimensions, the normalized mesh of a curve c consists of all edges

between pairs of points of the given set P of sampling points on c which
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induce an edge of the Voronoi diagram of P that intersects c. The nice

property of normalized meshes is that for a wide class of curves of bounded

curvature, the so-called r-regular shapes, a bound on the sampling density

can be given within which the normalized mesh retains all the topological

properties of the original curve.

For reconstruction of c, the edges belonging to the reconstructed mesh

are obtained by considering the angle between the intersections of the two

possible circles around a Delaunay edge. The angle between the circles

is defined to be the smaller of the two angles between the two tangent

planes at one intersection point of the two circles. This characterization is

useful because Delaunay discs tend to become tangent to the boundary of

the object. The reconstructed mesh consists of all edges whose associated

Delaunay discs have an angle smaller than Π
2 If the sampling density is

sufficiently high, the reconstructed mesh is equal to the normalized mesh.

While in two dimensions the normalized mesh is a correct reconstruction

of shapes having the property of r-regularity, the immediate extension to

three dimensions is not possible. The reason for that is that some Delaunay

spheres can intersect the surface without being approximately tangent to

it. Therefore, the normalized mesh in three dimensions does not contain

all faces of the surface.

To overcome this problem, two different heuristics for filling the gaps in

the surface structure were introduced.

The first heuristic is to triangulate the border of a gap in the triangular

mesh by considering only triangles contained in the Delaunay tetrahedriza-

tion.

The second heuristic is volume based. It merges Delaunay tetrahedra to

build up the possibly different solids represented in the point set. The

set of mergeable solids is initialized with the Delaunay tetrahedra and the

complement of the convex hull. The merging step is performed by pro-
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cessing the Delaunay triangles according to decreasing diameters. If the

current triangle separates two different solids in the set of mergable solids,

they are merged if the following holds:

- No triangle from the normalized mesh disappears;

- Merging will not isolate sample points inside the union of these ob-

jects, i.e. the sample points have to remain on the boundary of at

least one object.

The surface finally yielded by the algorithm is formed by the boundary of

the resulting solids.

Weller’s approach of Stable Voronoi Edges

Let P be a finite set of points in the plane. P
′

is an ε − perturbation

of P if d(pipi
′
) < ε holds for all pi ∈ P, pi

′ ∈ P ′
, i = 1, ..., n. An edge pi

′
,pj

′

of the Delaunay triangulation is called stable if the perturbed endpoints

pi
′
, pj

′
are also connected by an edge of the Delaunay triangulation of the

perturbed point set P
′
.

It turns out that for intuitively reasonably sampled curves in the plane,

the stable edges usually are the edges connecting two consecutive sampling

points on the curve, whereas the edges connecting non-neighboring sam-

pling points are instable. The stability of an edge can be checked in time

O(Voronoi neighbors)[24].

The extension of this approach to 3D-surfaces shows that large areas of

a surface can usually be reconstructed correctly, but still not sufficiently

approximated regions do exist. This resembles the experience reported by

Attali [16]. Further research is necessary in order to make stability useful

for surface construction.
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3.3.1.2 Volume-Oriented Cell Selection

Volume-oriented cell selection also consists of three steps which at a first

glance are quite similar to those of surface-oriented selection:

Volume-oriented cell selection:

1- Decompose the space in cells.

2- Remove those cells that do not belong to the volume bounded by the

sampled surface.

3- Calculate a surface from the selected cells.

The difference is that a volume representation, in contrast to a surface

representation, is obtained.

Most implementations of volume-oriented cell selection are based on the

Delaunay tetrahedrization of the given set P of sampling points. The al-

gorithms presented in the following differ in how volume-based selection

is performed. Some algorithms eliminate tetrahedrons expected outside

the desired solid, until a description of the solid is achieved [48, 29, 89].

Another methodology is the use of the Voronoi diagram to describe the

constructed solid by a ”skeleton” [105, 16].

Boissonnat’s Volume-Oriented Approach

Boissonnat’s volume-oriented approach starts with the Delaunay triangu-

lation of the given set P of sampling points. From this triangulation of

the convex hull, tetrahedra having particular properties are successively

removed. First of all, only tetrahedra with two faces, five edges and four

points or one face, three edges and three points on the boundary of the

current polyhedron are eliminated. Because of this elimination rule only

objects without holes can be reconstructed,see figure 3.14.
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Figure 3.14: Boissonnat’s Volume-Oriented Approach

Tetrahedra of this type are iteratively removed according to decreasing

decision values. The decision value is the maximum distance of a face of

the tetrahedron to its circumsphere. This decision value is useful because

flat tetrahedra of the Delaunay tetrahedrization usually tend to be out-

side the object and cover areas of higher detail. The algorithm stops if all

points lie on the surface, or if the deletion of the tetrahedron with highest

decision value does not improve the sum taken over the decision values of

all tetrahedra incident to the boundary of the polyhedron.

The approach of Isselhard, Brunnett, and Schreiber

The approach of [29]is an improvement of the volume-oriented algorithm

of Boissonnat [48]. While Boissonnat cannot handle objects with holes,

the deletion procedure of this approach is modified so that construction of

holes becomes possible.

As before, the algorithm starts with the Delaunay triangulation of the point

set. An incremental tetrahedron deletion procedure is then performed on

tetrahedra at the boundary of the polyhedron, as in Boissonnat’s algo-
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rithm. The difference is that more types of tetrahedra can be removed in

order to being able to reconstruct even object with holes. The addition-

ally allowed types of tetrahedra are those with one face and four vertices

or three faces or all four faces or on the current surface provided that no

point would become isolated through their elimination.

The elimination process is controlled by observing an elimination function.

The elimination function is defined as the maximum decision value (in

the sense of Boissonnat) of the remaining removable tetrahedra. In this

function, several significant jumps can be noticed. One of these jumps is

expected to indicate that the desired shape is reached. In practice, the

jump before the stabilization of the function on a higher level is the one

which is taken. This stopping point helps handling different point densities

in the point set which would lead to undesired holes through the extended

type set of removable tetrahedra in comparison to Boissonnat’s algorithm.

If all data points are already on the surface, the algorithm stops. If not,

more tetrahedra are eliminated to recover sharp edges (reflex edges) of the

object. For that purpose the elimination rules are restricted to those of

Boissonnat, assuming that all holes present in the data set have been re-

covered at this stage. Additionally, the decision value of the tetrahedra is

scaled by the radius of the circumscribed sphere as a measure for the size

of the tetrahedron. In this way, the cost of small tetrahedra is increased

which are more likely to be in regions of reflex edges than big ones. The

elimination continues until all data points are on the surface and the elim-

ination function does not decrease anymore, see figure 3.15.

The Υ-indicator approach of Veltkamp

To describe the method of Veltkamp [89, 90] some terminology is required.

A Υ-indicator is a value associated to a sphere through three boundary

54



CHAPTER 3. RECONSTRUCTION . . . 3.3. RECOSRTUCTION OF . . .

Figure 3.15: An example point set and the deletion process.

points of a polyhedron which is positive or negative, see figure 3.16 for an

illustration of the 2D-case. Its absolute value is computed as 1− r
R , where

r is the circle for the boundary triangle and R the radius of the boundary

tetrahedron. It is taken to be negative if the center of the sphere is on the

inner side and positive if the center is on the outer side of the polyhedron.

Note, that the Υ-indicator is independent of the size of the boundary tri-

angle (tetrahedron, respectively). Therefore, it adapts to areas of changing

point density. A removable face is a face with positive Υ-indicator value.

Figure 3.16: A Υ-indicator is a value associated to a sphere through three boundary

points of a polyhedron which is positive or negative for an illustration of the 2D-case
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The first step of the algorithm is to calculate the Delaunay tetrahedriza-

tion.

In the second step, a heap is filled with removable tetrahedra which are

sorted according to their Υ-indicator value. The removable tetrahedra are

of the same boundary types as in Boissonnat’s volume-oriented approach

[48]. The tetrahedron with the largest Υ-indicator value is removed and

the boundary is updated. This process continues until all points lie on the

boundary, or there are no further removable tetrahedra. The main advan-

tage of this algorithm is the adaption of the Υ−indicator value to variable

point density. Like Boissonnat’s approach, the algorithm is restricted to

objects without holes.Some intermediate stages during the construction of

a surface shown in figure 3.17

Figure 3.17: Some intermediate stages during the construction of a surface

The Approach of Schreiber and Brunnett

The approach of Schreiber and Brunnett [104, 105] uses properties of the

Voronoi diagram of the given point set for tetrahedra removal. The Voronoi

diagram of a point set P is a partition of the space in regions of nearest

neighborhood. For each point p in P, it contains the region of all points in

space that are closer to p than to any other point of P. It is interesting to
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note that the Voronoi diagram is dual to the Delaunay tetrahedrization of

P. For example, each vertex of the Voronoi diagram corresponds to the cen-

ter of a tetrahedron of the tetrahedrization. Edges of the Voronoi diagram

correspond to neighboring faces of the tetrahedra dual to its vertices. The

same observation holds for Voronoi diagrams in the plane that are used in

the following for the explanation of the 2D-version of the algorithm.

In the first step, the Delaunay triangulation and the dual Voronoi diagram

of P is determined. The second step, the selection of tetrahedra, uses a

minimum spanning tree of the Voronoi graph, see figure 3.18 The Voronoi

graph is the graph induced by the vertices and edges of the Voronoi di-

agram. A minimum spanning tree (MST) of a graph is a subtree of the

graph which connects all vertices and has minimum summed edge length.

Edge length in our case is the Euclidean distance of the two endpoints of

the edge.

In the second step, a pruning strategy is applied to it which possibly de-

composes it into several disjoint subtrees. Each subtree represents a region

defined by the union of the triangles dual to its vertices. Two pruning rules

have been developed for that purpose:

1- All those edges will be pruned for which no end point is contained in

the circumcircle of the dual Delaunay triangle of the other end point.

2- An edge will be pruned if its length is shorter than the mean value

of the radii of both circumcircles of the dual Delaunay triangles of its

voronoi end points.

The number of edges to be pruned can be controlled by using the edge

length as a parameter.

The resulting regions are then distinguished into inside and outside. In

order to find the inside regions, we add the complement of the convex

hull as further region to the set of subtree regions. The algorithm starts

57



CHAPTER 3. RECONSTRUCTION . . . 3.3. RECOSRTUCTION OF . . .

Figure 3.18: The selection of tetrahedra, uses a minimum spanning tree of the Voronoi

graph

with a point on the convex hull which is incident to exactly two regions.

The region different from the complement of the convex hull is classified

”inside”. Then the label ”inside” is propagated to neighboring regions by

again considering points that are incident to exactly two regions.

After all regions have been classified correctly, the boundary of the con-

structed shape is obtained as the boundary of the union of the region la-

beled ”inside”. An adaption of this method to three dimensions is possible.

The α-solids of Bajaj, Bernardini et al.

Bajaj, Bernardini et al. [10, 11, 25, 26]calculate so-called α−solids. While

α − shapes are computed by using eraser spheres at every point in space,

the eraser spheres are now applied from outside the convex hull, like in
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Boissonnat’s approach [48]. To overcome the approximation problems in-

herent to α − shapes a re-sculpturing scheme has been developed. Re-

sculpturing roughly follows the volumetric approach of Boissonnat in that

further tetrahedra are removed. This goal is to generate finer structures of

the object provided the α− shapes approach has correctly recognized the

larger structures of the object.

3.3.2 Surface construction with distance functions

The distance function of a surface gives the shortest distance of any point

in space to the surface. For closed surface the distances can be negative or

positive, dependent on whether a point lies inside or outside of the volume

bounded by the surface. There the question remained open how a distance

function can be calculated from the given set P of sample points. Solutions

are presented in the next subsection.

Another possibility of calculating a distance function is to construct a

surface to the given set P of data points and take the distance to this

surface. The idea behind that is that this distance function may be used

to get a better surface, for instance a smooth surface as in [10].

Besides marching cubes construction of surfaces , distance plays a major

role in construction of surfaces using the medial axis of a volume. The

medial axis consists of all points inside the volume for which the maximal

sphere inside the volume and centered at this point does not contain the

maximal sphere of any other point. Having the medial axis and the radius

of the maximum sphere at each of its points, the given object can be

represented by the union taken over all spheres centered at the skeleton

points with the respective radius.
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3.3.2.1 Calculation of Distance Functions

The approach of Hoppe et al.

Hoppe et al. [43, 45] suggest the following approach. At the beginning, for

each point pi an estimated tangent plane is computed. The tangent plane

is obtained by fitting the best approximating plane in the least square sense

[84] into a certain number k of points in the neighborhood of pi. In order

to get the sign of the distance in the case of close surfaces, a consistent

orientation of neighboring tangent planes is determined by computing the

Riemannian graph, see figure 3.19. The vertices of the Riemannian graph

are the centers of the tangent planes which are defined as the centroids of

the k points used to calculate the tangent plane. Two tangent plane centers

oi, oj are connected by an edge (i, j) if one center is in the k-neighborhood

of the other center. By this construction, the edges of the Riemannian

graph can be expected to lie close to the sampled surface.

Figure 3.19: A consistent orientation of neighboring tangent planes is determined by

computing the Riemannian graph

Each edge is weighted by 1 minus the absolute value of the scalar prod-

uct between normals of the two tangent plane centers defining the edge.

The orientation of the tangent planes is determined by propagating the

orientation at a starting point, by traversing the minimum spanning tree
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of the resulting weighted Riemannian graph.

Using the tangent plane description of the surface and their correct orien-

tations, the signed distance is computed by first determining the tangent

plane center nearest to the query point. The distance between the query

point and its projection on the nearest tangent plane. The sign is obtained

form the orientation of the tangent plane.

The approach of Roth and Wibowoo to distance functions

The goal of the algorithm of Roth and Wibowoo [38] is to calculate dis-

tance values at the vertices of a given voxel grid surrounding the data

points. The data points are assigned to the voxel cells into whcih they

fall. An ”outer” normal vector is calculated for each data point by finding

the closest two neighboring points in the voxel grid, and then using these

points along with the original point to compute the normal.

The normal orientation which is required for signed distance calculation is

determined as follows. Consider the voxel grid and the six axis directions

(±x,±y,±z). If we look from infinity down each axis into the voxel grid,

then those voxels that are visible must have their normals point towards

the viewing direction. The normal direction is fixed for these visible points.

Then the normal direction is propagated to those neighboring voxels whose

normals are not fixed by this procedure. This heuristic only works if the

nonempty voxel defines a closed boundary without holes.

The value of the signed distance function at a vertex of the voxel grid is

computed by taking the weighted average of the signed distances of every

point in the eight neighboring voxels. The signed distance to a point with

normal is the Euclidean distance to this point, with positive sign if the

angle between the normal and the vector towards the voxel vertex exceeds

90◦.
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3.3.2.2 Bittar’s et al. surface construction by medial axes

The approach of Bittar et al. [22] consists of two steps, the calculation of

the medial axis and the calculation of an implicit surface from the medial

axis.

The medial axis is calculated from a voxelization of a bounding box of the

given set of points. The voxels containing points of the given point set P

are assumed to be boundary voxels of the solid to be constructed. Starting

at the boundary of the bounding box, voxels are successively eliminated

until all boundary voxels are on the surface of the remaining voxel volume.

A distance function is propagated from the boundary voxels to the inner

voxels of the volume, starting wiht distance 0 on the boundary voxels. The

voxels with locally maximal distance value are included to the medial axis.

The desired surface is calculated by distributing centers of spheres on the

Figure 3.20: The desired surface is calculated by distributing center of sphere on the

medical

medial, see figure 3.20. The radius of a sphere is equal to the distance
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assigned to its center on the medial axis. For each sphere, a field function

is defined which allows to calculate a scalar field value for arbitrary point

in space. A field function of the whole set of spheres is obtained as sum

of the field functions of all spheres. The implicit surface is defined as an

iso-surface of the field function, that is, it consists off all points in space

for which the field function has a given constant value.

In order to save computation time, a search strategy is introduced which

restricts the calculation of the sum to points with suitable positions. The

shape of the resulting surface is strongly influenced by the type of field

function. For example, a sharp field function preserves details while a soft

function smoothes out the details,figure 3.21. Also the connectness of

the resulting solid can be influenced by the shape function, figure F3.22.

function smoothes out the details, cf. figure 3.25. Also the connectness of

the resulting solid can be influenced by the shape function, see.figure 3.22.

Because of the voxelization, a crucial point is tuning the resolution of

the medial axis. If the resolution of the axis is low, finer details are not

represented very accurately. The display of the surface detail is improved

if the resolution is increased but can also tend to disconnect parts of the

surface if the resolution is higher than the sample density at certain regions.

Figure 3.21: A sharp field function preserves details while a soft function smoothes out

the details
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Figure 3.22: The connectness of the resulting solid can be influenced by the shape function

3.3.3 Surface construction by warping

Warping-based surface construction means to deform an initial surface so

that it gives a good approximation of the given point set P. For example,

let the initial shape be a triangular surface to some or all of its vertices

corresponding points in P are determined to which the vertices have to

be moved in the warping process. When moving the vertices of the mesh

to their new locations, the rest of the mesh is also deformed and yields a

surface approximation of the points in P.

Surface construction by warping is particularly suited if a rough approxi-

mation of the desired shape is already known. This simplifies detection of

corresponding points.

Several methods of describing deformable surfaces were developed in the

past. Muraki suggested a ”blobby model” to approximate 2.5 D range im-

ages [98]. Terzopoulos, Witkin and Kass [21, 20] made use of deformable

superquadrics which have to fit the input data points.
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Miller et al. [56] extract a topologically closed geometric model from a

volume data set. The algorithm starts with a simple model that is already

topologically closed and deforms the model on a set of constraints, so that

the model grows or shrinks to fit the object within the volume while main-

taining it closed and a locally simple non-self-intersecting polyhedron that

is either embedded in the object or surrounds the object in the volume data

representation. A function is associated with every vertex of the polyhe-

dron that associates costs with local deformation adherent to properties

of simple polyhedra, and the relationship between noise and feature. By

minimizing these constraints, one achieves an effect similar to inflating a

balloon within a container or collapsing a piece of shrink wrap around the

object.

A completely different approach to warping is modeling with oriented par-

ticles suggested by Szeliski and Tonnesen [88]. Each particle owns several

parameters which are updated during the modeling simulation. By mod-

eling the interaction between the particles themselves the surface is being

modeled using forces and repulsion. As an extension Szeliski and Tonnesen

describe how their algorithm can be extended for automatic 3D reconstruc-

tion. At each sample location one particle with appropriate parameters is

generated. The gaps between the sample points (particles, respectively)

are filled by growing particles away from isolated points and edges. After

having a rough approximation of the current surface the other particles are

rejusted to smooth the surface.

In the following three subsections three approaches are outlined which

stand for basically different methodologies, a purely geometric approach,

a physical approach, and a computational intelligence approach.
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3.3.3.1 Spatial free form warping

The idea of spatial free-form warping is to deform the whole space in which

an object to be warped is embedded in, with the effect that the object is

warped at the same time. Space deformation is defined by a finite set of

displacement vectors consisting of pairs of initial and target point, from

which a spatial displacement vector field is interpolated using a scattered

data interpolation method. There is a huge number of scattered data

interpolation methods known in literature, e.g. [52]. Among them that

one can be chosen that yields the most reasonable shape for the particular

field of application.

The resulting displacement vector field tells for each point in space its

target point. In particular, if the displacement vector field is applied to all

vertices of the initial mesh, or of a possibly refined one, the mesh is warped

towards the given data points [19].

The advantage of spatial free form warping is that usually only a small

number of control displacement vectors located at points with particular

features like corners or edges is necessary.

3.3.3.2 The approach of Algorri and Schmitt

The idea of Algorri and Schmitt [71] is to translate given approximate tri-

angular mesh into a physical model, cf. figure 3.23. The vertices of the

mesh are interpreted as mass points. The edges are replaced with springs.

Each nodal mass of the resulting mesh of springs is attached to its closest

point in given set P of sampling points by a further spring. The masses

and springs are chosen so that the triangular mesh is deformed towards the

data points. The model can be expressed as a linear differential equation

of degree 2. This equation is solved iteratively. Efficiency is gained by

embedding the data points and the approximate triangular mesh into a
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Figure 3.23: The approach of Algorri and Schmitt

regular grid of voxels.

3.3.3.3 Kohonen feature map approach of Baader and Hirzinger

The Kohonen feature map approach of Baader and Hirzinger [1, 2] can be

seen as another implementation of the idea of surface construction by warp-

ing. Kohonen’s feature map is a two-dimensional array of units (neurons),

see figure 3.24.

Each unit uj has a corresponding weight vector ~wj. In the begin-

ning these vectors are set to normalized random values (of length equal
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Figure 3.24: Kohonen’s feature map is a two-dimensional array of units (neurons),

to 1). During the reconstruction or training process the neurons are fed

with the input data which affects their weight vectors (which resemble

their position in three-space). Each input vector ~i is presented to the

units j which produce output oj of the form oj = ~wj~i.The unit gener-

ating the highest response oj is the center of the excitation area. The

weights of this unit and a defined neighborhood are updated by the for-

mula ~wj(t+ 1) = ~wj(t) + εi(~i− ~wj(t)).

Note that after this update the weight vectors have to be normalized again.

The value εj = ηhj contains two values, the learning rate η and the neigh-

borhood relationship hj. Units far away from the center of excitation are

only slightly changed.

The algorithm has one additional difficulty. If the input point data do

not properly correspond with the neuron network it is possible, that neu-

rons might remain which had not been in any center of excitation so far.
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Therefore they had been updated only by the neighborhood update which

usually is not sufficient to place the units near the real surface. Having

this in mind, Baader and Hirzinger have introduced a kind of reverse train-

ing. Unlike the normal training where for each input point a corresponding

neural unit is determined and updated the procedure in the intermediate

reverse training is reciprocal. For each unit uj the part of the input data

with the highest influence is determined and used for updating uj, see

figure 3.25.

Figure 3.25: The combination of this normal and reverse training completes the algorithm

of Baader and Hirzinger and has to be used in the training of the network.

3.3.4 Incremental surface-oriented construction

The idea of incremental surface-oriented construction is to build-up the

interpolating or approximating surface directly on surface-oriented proper-

ties of the given data points. This can be done in quite different manner.

For example, surface construction may start with an initial surface edge at

some location of the given point set P, connecting two of its points which

are expected neighboring on the surface. The edge is successively extended

to a larger surface by iteratively attaching further triangles at boundary

edges of the emerging surface. The surface-oriented algorithm of Boisson-

nat explained in the first subsection may be assigned to this category.
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3.3.4.1 Boissonat’s surface-oriented approach

Boissonnat’s surface oriented contouring algorithm [48] usually starts at

the shortest connection between two points of the given point set P. In

order to attach a new triangle at this edge, and later on to other edges

on the boundary, a locally estimated tangent plane is computed based on

the points in the neighborhood of the boundary edge. The points in the

neighbourhood of the boundary edge are then projected onto the tangent

plane. The new triangle is obtained by connecting one of these points to the

boundary edge. That point is taken which maximizes the angle between

at its edges in the new triangle, that is, the point sees edge boundary edge

under the maximum angle, see figure 3.26 The algorithm terminates if

Figure 3.26: The point is taken which maximizes the angle between at its edges in the

new triangle, that is, the point sees edge boundary edge under the maximum angle

there is no free edge available any more. The behavior of this algorithm

can be seen in figure 3.27

3.3.4.2 Approach of Mencl and Muller

The solution of Mencl and Muller consists of seven main steps [19]

1. The computation of the EMST (Euclidean minimum spanning tree)

of the point set.
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Figure 3.27: The algorithm terminates if there is no free edge available any more.

2. Extension of the graph at leaf points of the EMST.

3. Recognition of features.

4. Extraction of different objects out of the graph.

5. Connection of features of the same kind.

6. Connection of associated edges in the graph.

7. Filling the wire frame with triangles.

The first two steps are designed to build up an initial surface description

graph (SDG). This is performed by computing the EMST (Euclidean min-

imum spanning tree) and an graph extension step afterwards, see figure

3.28. Next, a feature recognition is performed to gain necessary informa-

tion considering the possible structure of the surface in the third step.

As in object recognition of raster images Mencl and Muller consider fea-

tures to be regions with special information about the objects structure
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like paths, edges, point rings and so on. After that, these feature areas are

disconnected and/or connected according to certain rules to have a proper

description of the objects in the point set (step 4 and 5). In the last step

before the triangle filling procedure, the so far computed graph is extended

more by connecting associated edges in the graph under consideration of

certain constraints. Finally, the triangles are filled into this surface de-

scription graph by using a rule system to assure a resulting surface with

high accuracy.

As a main concept, Mencl and Muller introduce the concept of feature

recognition and clustering to improve the accuracy of the surface descrip-

tion graph according to the assumed surface of the object. The idea is

the possibility to integrate different kind of recognition algorithms in the

main algorithm while maintaining the structural consistency of the SDG.

In contrast to many other methods this approach returns a piecewise lin-

ear surface which interpolates exactly the input point set. The algorithm

can handle point sets with high changes in point density. This makes it

possible to describe objects with only the least necessary amount of points

since it is not necessary to oversample areas with low local curvature. The

reconstruction of sharp edges in artificial or synthetic objects can be done

properly as well as the reconstruction of non-orientable surfaces like Mobius

strips, for example.
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Figure 3.28: Approach of Mencl and Muller
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Chapter 4

Filling hole in traingle mesh

4.1 Introduction

There has been a growing trend among shoe manufactures to introduce

customized shoes to satisfy varying customer comfort needs. In the last few

years with rapid development of 3D scanning that can easily and quickly

acquire enormous number of surface points from a physical part, have

now made automatic determination footwear feasible. Depending on the

both of the complexity of the object and the adopted data acquisition

technology some areas of the objects outer surface may never accessible.

This induces some deficiencies in the point cloud and a set of holes in

the triangle mesh. Moreover, data resulting from 3D scanning are given

in an arbitrary position and orientation in 3D space. Thus , substantial

post-processing is usually required before taking these models to footwear

application. A general approach for filling hole in 3D model is described

in this chapter.

4.2 Preliminaries

A triangular mesh is defined as a set of vertices and a set of oriented

triangles that join these vertices. Two triangles are adjacent if they share
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a common edge.

A boundary edge is an edge adjacent to exactly one triangle. A boundary

vertex is a vertex that is adjacent to a boundary edge. A boundary triangle

is a triangle that own one or two boundary vertices. A hole is a closed cycle

of boundary edges. A given hole is assumed to have no islands.

1-ring triangles of vertex are all triangles that share one common vertex.

1-ring edges of vertex are all edges that share one common vertex and, all

vertices on 1-ring edges of a vertex (except itself) are called 1-ring vertices

of the vertex. A vertex based topological structure is used which records

1-rings vertices, 1-ring edges and 1-ring triangles of every vertex. Average

normal of the 1-ring triangular of the vertex is defined vertex normal.

figure 4.1 illustrated the preliminaries.

Figure 4.1: Preliminaries related to triangle mesh and hole.
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4.3 Advance front mesh technique

The advancing front mesh generators is used for constructing mesh of the

domain from its boundary [96, 60] The elements created are triangles (vari-

ations exist which enable to create quadrilaterals almost everywhere, de-

pending on the number of sides forming the given boundary) and tetrahe-

dral in three dimensions. The data required consists of the boundary, or

more precisely, a polygonal discretization of it, input as a set of segments

Additional items (points, edges or faces), which must be considered as pre-

scribed item and thus which must be present in created triangulation, can

be included in the data.

The process of any advancing-front method can be summarized as fol-

lows:

- Initialization of the front.

- Analysis of the front by determining the departure zone and analysis

this region by:

(i) Creating internal points and internal elements.

(ii) Updating the front.

- As long as the front is not empty, go to analyse of the front

4.4 Differential geometry background

We take some basic theory of mappings from Kreyszig [67]suppose a sur-

face S ⊆ R3 has the parametric representation

x(u1, u2) = (x1(u
1, u2), x2(u

1, u2), x3(u
1, u2) (4.1)

for point (u1, u2) in some domain in R2. We call such a representation

regular if (i) the functions x1, x2, x3 are smooth, i.e., differentiable as many
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times as we need for our discussion, and (ii) the vectors

x1 =
∂X

∂u1
, x2 =

∂X

∂u2
(4.2)

are linearly independent at every point (their cross product x1×x2 is nonzero).

Many properties of S are characterized by its first fundamental form, which

is the square of the element of arc of a curve in S, the quadratic form

ds2 = x1.x1(du
1)2 + 2x1.x2du

1du2 + x2.x2(du
2)2 (4.3)

Writing

gαβ = xα.xβ, α = 1, 2, β = 1, 2, (4.4)

and arranging the coeffcients in a symmetric matrix

I =

 g11 g12

g12 g22

 (4.5)

we have

ds2 =
(
du1 du2

)
I

 du1

du2

 (4.6)

Often, the matrix I is itself referred to as the first fundamental form.

Under the assumption of regularity, this matrix has a strictly positive de-

terminant

g = detI = g11g22 − g2
12 (4.7)

the discriminant of the quadratic form. In this case, the form is positive

define. The coefficients gαβ are the components of a covariant tensor of

second order, called the metric tensor, denoted simply by gαβ.

Suppose now that S is a surface with coordinates (u1, u2) and that f is a

mapping from S to a second surface S∗ . Then we can define the parameter-

ization x∗ = f◦x of S∗,so that the coordinates of any image point f(p)∈S∗

are the same as those of the corresponding pre-image point p∈S, see figure
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4.2. We say that the mapping f is allowable if the parameterization x∗ is

Figure 4.2: The mapping f from StoS∗ and the parameterization x of S induce the pa-

rameterization X∗ = fofS∗

regular.With this set up we will now consider various kinds of mappings.

4.4.1 Isometric mappings

An allowable mapping from S to S∗ is isometric or length-preserving if the

length of any arc on S∗ is the same as that of its pre-image on S. Such a

mapping is called an isometry.

For example, the mapping of a cylinder into the plane that transforms

cylindrical coordinates into cartesian coordinates is isometric.

Theorem 1. An allowable mapping from S to S∗ is isometric if and only

if the coeffcients of the first fundamental forms are the same, i.e.,

I = I∗ (4.8)

Two surfaces are said to be isometric if there exists an isometry between

them. Isometric surfaces have the same Gaussian curvature at correspond-

ing pairs of points (since Gaussian curvature depends only on the first

fundamental form).
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4.4.2 Conformal mappings

An allowable mapping from StoS∗ is conformal or angle-preserving if the

angle of intersection of every pair of intersecting arcs on S∗ is the same as

that of the corresponding pre-images on S at the corresponding point. For

example, the stereographic and Mercator projections are conformal maps

from the sphere to the plane, see figure 4.3

Figure 4.3: Orthographic (a), stereographic (b), Mercator (c), and Lambert (d) projection

of the Earth.

Theorem 2.An allowable mapping from S to S∗ is conformal or angle

preserving if and only if the coefficients of the first fundamental forms are

proportional, i.e.,

I = η(u1, u2)I∗ (4.9)

for some scalar function η 6=0

4.4.3 Equiareal mappings

An allowable mapping from S to S∗ is equiareal if every part of S is mapped

onto a part of S∗ with the same area. For example, the Lambert projection

is an equiareal mapping from the sphere to the plane, see figure 4.3

Theorem 3.An allowable mapping from S to S∗ is equiareal if and only
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if the discriminants of the first fundamental forms are equal, i.e.,

g = g∗ (4.10)

The proofs of the above three results can be found in Kreyszig [67].

Theorem 4. Every isometric mapping is conformal and equiareal, and

every conformal and equiareal mapping is isometric, i.e.,

isometric⇐⇒conformal + equiareal.

We can thus view an isometric mapping as ideal, in the sense that it pre-

serves just about everything we could ask for: angles, areas, and lengths.

However, as is well known, isometric mappings only exist in very special

cases. When mapping into the plane, the surface S would have to be devel-

opable, such as a cylinder. Many approaches to surface parameterization

therefore attempt to find a mapping which either

1- is conformal, i.e., has no distortion in angles, or

2- is equiareal, i.e., has no distortion in areas, or

3- minimizes some combination of angle distortion and area distortion.

4.4.4 Planar mappings

A special type of mappings that we will consider now and then in the

following are planar mappings f : R2 → R2,f(x, y) = (u(x, y), v(x, y)).

For these kind of mappings the first fundamental form can be written as

I = JTJ (4.11)

where J =

 ux uy

vx vy

 is the Jacobian of f. It follows that the singular

values σ1 and σ2 of J are just the square roots of the eigenvalues λ1 and λ2
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of I and it is then easy to verify.

Proposition 1. For a planar mapping f : R2 ⇒ R2 the following equiva-

lencies hold:

1- f is isometric ⇐⇒ I =

 1 0

0 1

 ⇐⇒ λ1 = λ2 = 1 ⇐⇒ σ1 = σ2 = 1

2- f is conformal ⇐⇒ I =

 η 0

0 η

 ⇐⇒ λ1/λ2 = 1 ⇐⇒ σ1/σ2 = 1

3- f is equiareal⇐⇒ detI=1 ⇐⇒ λ1λ2 = 1 ⇐⇒ σ1σ2 = 1

4.4.5 Conformal and harmonic mappings

Conformal mappings have many nice properties, not least of which is their

connection to complex function theory. Consider for the moment the case

of mappings from a planar region S to the plane. Such a mapping can be

viewed as a function of a complex variable,w = f(z). Locally, a conformal

map is simply any function f which is analytic in a neighbourhood of a

point z and such that f
′
(z)6=0 A conformal mapping f thus satisfies the

Cauchy- Riemann equations, which, with z = x+ iy and w = u+ iv are

∂u

∂x
=
∂v

∂y
,

∂u

∂y
= −∂v

∂x
(4.12)

Now notice that by differentiating one of these equations with respect to

x and the other with respect to y, we obtain the two Laplace equations

∆u = 0, ∆v = 0 (4.13)

where

∆ =
∂2

∂x2
+

∂2

∂y2
(4.14)

is the Laplace operator.

Any mapping (u(x, y)), v(x, y)) which satisfies these two Laplace equations
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is called a harmonic mapping. Thus a conformal mapping is also harmonic,

and we have the implications

isometric=⇒conformal=⇒harmonic.

Why do we consider harmonic maps? Well, their big advantage over con-

formal maps is the ease with which they can be computed, at least approx-

imately. After choosing a suitable boundary mapping (which is equivalent

to using a Dirichlet boundary condition for both u and v), each of the

functions u and v is the solution to a linear elliptic partial differential

equation (PDE) which can be approximated by various methods, such as

finite elements or finite differences, both of which lead to a linear system of

equations. Harmonic maps are also guaranteed to be one-to-one for convex

regions.

Theorem 5 (RKC).If f : S→R2 is harmonic and maps the boundary ∂S

homeomorphically into the boundary ∂S∗ of some convex region S∗⊂R2

then f is one-to-one;see figure 4.4

On the downside, harmonic maps are not in general conformal and do not

Figure 4.4: One-to-one harmonic mappings.

preserve angles. For example, it is easy to verify from the Cauchy-Riemann

and Laplace equations that the bilinear mapping f : [0, 1]2⇒R2 defined by

u = x(1 + y), v = y (4.15)

is harmonic but not conformal. Indeed the figure 4.5 clearly shows that

this harmonic map does not preserve angles. Another weakness of har-
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Figure 4.5: A harmonic mapping which is not conformal

monic mappings is their ”one-sidedness”. The inverse of a harmonic map-

ping is not necessarily harmonic. Again, the bilinear example above pro-

vides an example of this. It is easy to check that the inverse mapping

x = u/(1 + v), y = vis not harmonic as the function x(u, v)does not satisfy

the Laplace equation.

Despite these drawbacks, harmonic mappings do at least minimize defor-

mation in the sense that they minimize the Dirichlet energy

ED(f) =
1

2

∫
S

‖gradf‖2 =
1

2

∫
S

(‖ 5 u‖2 + ‖ 5 v‖2) (4.16)

This property combined with their ease of computation explains their pop-

ularity.

When we consider mappings from a general surface S⊂R3 to the plane, we

find that all the above properties of conformal and harmonic mappings are

essentially the same. The equations just become more complicated. Any

mapping f from a given surface S to the plane defines coordinates of S, say

(u1, u2). By theorem 2, If f is conformal then there is some scalar function

η 6=0 such that

ds2 = η(u1, u2)((d(u1)2 + (d(u2)2) (4.17)

Suppose that S has given coordinates (ũ1, ũ2). After some analysis, one

can show that the above equation implies the two equations
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

∂u1

∂ũ1
=
g̃11√
g̃

∂u2

∂ũ2
− g̃12√

g̃

∂u2

∂ũ1

∂u1

∂ũ2
=
−g̃22√
g̃

∂u2

∂ũ1
+
g̃12√
g̃

∂u2

∂ũ2

(4.18)

which are a generalization of the Cauchy-Riemann equations 4.12. In-

deed, in the special case that S is planar, we can take

g̃11 = g̃22 = 1 g̃12 = 0 (4.19)

and we get simply

∂u1

∂ũ1
=
∂u2

∂ũ2

∂u1

∂ũ2
= −∂u

2

∂ũ1
(4.20)

Similar to the planar case, we can differentiate one equation in 4.18

with respect to ũ1 and the other with respect to ũ2, and obtain the two

generalizations of Laplace’s equation,

∆Su
1 = 0 ∆Su

2 = 0 (4.21)

where ∆s is the Laplace-Beltrami operator

4S =
1√
g̃

(
∂

∂ũ1
(
g̃22√
g̃

∂

∂ũ1
− g̃12√

g̃

∂

∂ũ2
) +

∂

∂ũ2
(
g̃11√
g̃

∂

∂ũ2
− g̃12√

g̃

∂

∂ũ1
)) (4.22)

When this operator is differentiated out, one finds that it is a linear elliptic

operator with respect to the coordinates (ũ1, ũ2) The operator generalizes

the Laplace operator (as can easily be checked by taking S to be planar

with g̃αβ as in (4.19)and is independent of the particular coordinates (in

this case (ũ1, ũ2)) used to define it. As explained by Klingenberg [64]it can

also be written simply as

∆s = divsgrads (4.23)
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Similar to the planar case, a harmonic map can either be viewed as the

solution to equation (4.21), or as the minimizer of the Dirichlet energy

EDf =
1

2

∫
s
‖ gradsf ‖2 (4.24)

4.4.6 Equiareal mappings

There are essentially only two quantities to consider minimizing in a map-

ping: angle distortion and area distortion. We know from the Riemann

mapping theorem that (surjective) conformal mappings from a disk-like

surface to a fixed planar simply-connected region not only exist but are

also almost unique. For example, consider mapping the unit disk S into

itself (treating S as a subset of the complex plane), and choose any point

z∈S and any angle θ,−Π < θ < Π. According to the theorem, there is

precisely one conformal mapping f : S→S such that f(z) = 0 and arg

f
′
(z) = θ In this sense there are only the three degrees of freedom defined

by the complex number z and the real angle θ in choosing the conformal

map.

What we want to do now is to demonstrate that equiareal mappings are

substantially different to conformal ones from the point of view of unique-

ness as there are many more of them. The following example is to our

knowledge novel and nicely illustrates the abundance of equiareal map-

pings. Consider again mappings f : S→S from the unit disk S into itself.

Using the polar coordinates x = rcosθ,y = rsinθ one easily finds that the

determinant of the Jacobian of any mapping f(x, y) = (u(x, y), v(x, y)) can

be expressed as

detJ(f) = uxvx − uyvx =
1

r
(urvθ − uθvr) (4.25)

Consider then the mapping f : S→S defined by

r(cosθ, sinθ)→r(cos(θ + φ(r)), sin(θ + φ(r)) (4.26)
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for 0 ≤ r ≤ 1 and −Π < θ ≤ Π, where φ : [0, 1] → R is an arbitrary

function. This mapping maps each circle of radius r centred at the origin

into itself, rotated by the angle φ(r) see figure 4.6 If φ is differentiable

Figure 4.6: An equiareal mapping.

then so is f and differentiation shows that

urvθ − uθvr = r (4.27)

independent of the function φ. We conclude that detJ(f) = 1 and there-

fore, according to Proposition 1, f is equiareal, irrespective of the chosen

univariate function φ

It is not difficult to envisage other families of equiareal mappings con-

structed by rotating circles about other centres in S. These families could

also be combined to make further equiareal mappings.

When we consider again the formulations of conformal and equiareal map-

pings in terms of the first fundamental form, the lack of uniqueness of

equiareal mappings becomes less surprising. For, as we saw earlier, the

property of conformality (1) essentially places two conditions on the three

coeffecients of the first fundamental form g∗11, g
∗
12, g

∗
22 while the property of

equiarealness (2) places only one condition on them (the three conditions

together of course completely determine the three coefficients, giving an

isometric mapping).

Considering not only the non-uniqueness, but also the rather strange ro-

tational behaviour of the above mappings, we conclude that it is hardly
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sensible to try to minimize area deformation alone. In order to find a well-

behaved mapping we surely need to combine area-preservation with some

minimization of angular distortion.

4.4.7 Discrete harmonic mappings

Common to almost all surface parameterization methods is to approximate

the underlying smooth surface S by a piecewise linear surface ST , in the

form of a triangular mesh, i.e. the union of a set T = {T1, ..., Tn} of trian-

gles Ti such that the triangles intersect only at common vertices or edges.

Nowadays in fact, surfaces are frequently simply represented as triangular

meshes, and the smooth underlying surface is often not available. We will

denote by V the set of vertices. If ST has a boundary, then the boundary

will be polygonal and we denote by VB the set of vertices lying on the

boundary and by VI set of interior vertices.

The most important parameterization task is to map a given disk-like sur-

face S ⊂ R3 into the plane. Working with a triangular mesh ST the goal

is to find a suitable (polygonal) domain S∗ ⊂ R2 and a suitable piecewise

linear mapping f : ST → S∗ that is linear on each triangle Ti in ST and

continuous; see Figure 4.7 Such a mapping is uniquely determined by the

images f(v) ∈ R2 of the vertices v ∈ V .

Figure 4.7: Piecewise linear mapping of a triangular mesh.
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4.4.8 Finite element method

One of the earliest methods for mapping disk-like surfaces into the plane

was to approximate a harmonic map using the finite element method based

on linear elements. This method was introduced to the computer graphics

community by Eck et al.[23] and called simply a discrete harmonic map,

although a similar technique had earlier been used by Pinkall and Polthier

for computing piecewise linear minimal surfaces [79]. The basic method

has two steps.

1- First fix the boundary mapping, i.e. fix f |∂ST = f0 by mapping the

polygonal boundary ∂ST homeomorphically to some polygon in the

plane. This is equivalent to choosing the planar image of each vertex

in the mesh boundary ∂ST and can be done in several ways [30, 47]

2- Find the piecewise linear mapping f : ST → S∗ which minimizes the

Dirichlet energy

ED =
1

2

∫
ST

‖gradST
f‖2 (4.28)

subject to the Dirichlet boundary condition f |∂ST = f0.

The main advantage of this method over earlier approaches is that this

is a quadratic minimization problem and reduces to solving a linear sys-

tem of equations. Consider one triangle T = [v1, v2, v3] in the surface ST .

Referring to figure 4.8 one can show that

2
∫
T
‖gradTf‖2 = cot θ3‖f(v1)−f(v2)‖2+cot θ2‖f(v1)−f(v3)‖2+cot θ1‖f(v2)−f(v3)‖2

(4.29)

The normal equations for the minimization problem can therefore be ex-

pressed as the linear system of equations

∑
jεNi

wi,j(f(vj)− f(vi)) = 0 vi ∈ VI (4.30)
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Figure 4.8: Atomic map between a mesh triangle and the corresponding parameter trian-

gle.

where

wi,j = cotαi,j + cotβi,j (4.31)

and the angles αi,j, βij are shown in the figure 4.9. Here we have assumed

that the vertices in V are indexed (in any random order) and that Ni

denotes the set of indexes of the neighbours of the vertex vi (those vertices

which share an edge with vi).

The associated matrix is symmetric and positive definite, and so the

Figure 4.9: Angles for the discrete harmonic map and the mean value coordinates.

linear system is uniquely solvable. The matrix is also sparse and iterative

methods are effective, e.g., conjugate gradients. Note that the system has

to be solved twice, once for the x- and once for the y-coordinates of the

parameter points f(vi), v ∈ VI . In practice the method often gives good
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visual results.

4.5 Rotation about arbitray axis in 3 dimenstional

The problem of rotation about an arbitrary axis in three dimensions arises

in many fields including computer graphics and molecular simulation. In

this section we give an algorithm and matrices for calculating the motion.

An algorithm is (see Figure 4.10):

Figure 4.10: Moving the axis of rotation to the z axies

1- Translate space so that the rotation axis passes through the origin.

2- Rotate space about the z-axis so that the rotation axis lies in the xz

plane.

3- Roate space about the y-axis so that the rotaion axis lies along z-axis.

4- Perform the desired rotation by θ about z-axis.
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5- Apply the inverse of step (3).

6- Apply the inverse of step (2).

7- Apply the inverse of step (1).

This algorithm assumes that the axis of rotation is not parallel to the

z axis. We will write our three-dimensional points in four homogeneous

coordinates.i.e.,(x,y,z)will be written as (x,y,z,1).This enables us to do co-

ordinate transformations using 4x4 matrices. Note that these 4x4 matrices

are only necessary for translations, if we omitted translations from our

movements we could do the motions with 3x3 rotation matrices obtained

by deleting the last rows and last columns of the 4x4 matrices. In this

thesis vectors are multiplied by matrices on the vector’s left.

4.5.1 A translation matrix

The product Tp.v is equivalent to the vector sum < −a,−b,−c, 0 >+v,

i.e, this transformation moves the point P1(a, b, c) to the origin

1 0 0 −a
0 1 0 −b
0 1 0 −c
0 0 0 1


(4.32)

4.5.2 Rotation matrices

Here are the matrices for rotation by α around x−axis, β around y−axis
and γ around the z − axis

Rx(α) =



1 0 0 0

0 cos(α) −sin(α) 0

0 sin(α) cos(α) 0

0 0 0 1


(4.33)
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Ry(β) =



cos(β) 0 sin(β) 0

0 1 0 0

−sin(β) 0 cos(β) 0

0 0 0 1


(4.34)

Rx(γ) =



cos(γ) −sin(γ) 0 0

sin(γ) cos(γ) 0 0

0 0 1 0

0 0 0 1


(4.35)

The general rotation matrix depends on the order of rotations. The first

matrix rotates about x, then y, then z, the second rotations about z, then

y, then x.

RzRyRx =



cosβcosγ cosγsinαsinβ − cosαsinγ cosαcosγsinβ + sinαsinγ 0

cosβsinγ cosαcosγ + sinαsinβsinγ −cosγsinα + cosαsinβsinγ 0

−sinβ cosβsinα cosαcosβ 0

0 0 0 1


(4.36)

RxRyRz =



cosαcosβ −cosγsinα + cosαsinβsinγ cosαcosγsinβ + sinαsinγ 0

cosβsinα cosαcosγ + sinαsinβsinγ cosγsinαsinβ − cosαsinγ 0

−sinβ cosβsinγ cosβcosγ 0

0 0 0 1


(4.37)

4.5.3 Transformations for moving a vector to the z-axis

In this section we introduce matrices to move a rotation vector < u, v, w >

to the to the z − axis This is illustrated in figure 4.10. Note that we

use the vector’s components to form expressions for the cosines and sines.

We require that the rotation vector not be parallel to the z − axis, else

u = v = 0 and the denominators vanish.

The matrix to rotate a vector about the z − axis to the xz − plane is

Rxz =



u√
u2+v2

v√
u2+v2

0 0
−v√
u2+v2

u√
u2+v2

0 0

0 0 1 0

0 0 0 1


(4.38)
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The matrix to rotate the vector in the xz − plane to the z − axis is

Rxz2z =



w√
u2+v2+w2 0 −

√
u2+v2√

u2+v2+w2 0

0 1 0 0
√
u2+v2√

u2+v2+w2 0 w√
u2+v2+w2 0

0 0 0 1


(4.39)

4.5.4 Rotations about the origin

In this section we rotate the point (x, y, z) about the vector < u, v, w >

by the angle θ. The matrix for rotations about the origin is the product

R−1
xzR

−1
xz2zRz(θ)Rxz2zRxz



u2+(v2+w2)cosθ
u2+v2+w2

uv(1−cosθ)−w
√
u2+v2+w2sinθ

u2+v2+w2

uw(1−cosθ)+v
√
u2+v2+w2sinθ

u2+v2+w2 0

uv(1−cosθ)+w
√
u2+v2+w2sinθ

u2+v2+w2

v2+(u2+w2)cos(θ)
u2+v2+w2

uw(1−cosθ)−u
√
u2+v2+w2sinθ

u2+v2+w2 0

uw(1−cosθ)−v
√
u2+v2+w2sinθ

u2+v2+w2

vw(1−cosθ)+u
√
u2+v2+w2sinθ

u2+v2+w2

w2+(u2+v2)cosθ
u2+v2+w2 0

0 0 0 1



(4.40)

If we multiply this times the point to be rotated, (x,y,z), we get the rotated

point



u(ux+vy+wz)+(x(v2+w2)−u(vy+wz))cosθ+
√
u2+v2+w2(−wy+vz)sinθ

u2+v2+w2

v(ux+vy+wz)+(y(v2+w2)−v(ux+wz))cosθ+
√
u2+v2+w2(wx−uz)sinθ

u2+v2+w2

w(ux+vy+wz)+(z(v2+w2)−w(vy+wz))cosθ+
√
u2+v2+w2(−vx+uy)sinθ

u2+v2+w2

1


(4.41)

4.6 Rotation about an arbitrary line in 3 dimenstional

We must give the axis an orientation so that positive and negative an-

gles of rotation are defined. If the axis of rotation is given by two points

P1 = (a, b, c) and and P2 = (d, e, f) , then the (oriented ) vector of rotation

can be given by < u, v, w >=< d − a, e − b, f − c > . The matrix for
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rotation about an arbitrary line is given by the product:

T−1
P1R

−1
xzR

−1
xz2zRz(θ)Rxz2zRxzTP1

This is the rotation operator for rotations about the line through P1(a, b, c)

parallel to 〈u, v, w〉 by the angle θ. In hopes of fitting the matrix onto the

page we make the substitution L =
√
u2 + v2 + w2



a(v2+w2)+u(−bv−cw+ux+vy+wz)+(−a(v2+w2)+u(bv+cw−vy−wz)+(v2+w2)x)cosθ+
√
u2+v2+w2(−cv+bw−wy+vz)sinθ

u2+v2+w2

b(u2+w2)+v(−au−cw+ux+vy+wz)+(−b(u2+w2)+v(au+cw−ux−wz)+(u2+w2)y)cosθ+
√
u2+v2+w2(cu−aw+wx−uz)sinθ

u2+v2+w2

c(v2+u2)+w(−au−bv+ux+vy+wz)+(−c(v2+u2)+w(au+bv−ux−vy)+(u2+v2)z)cosθ+
√
u2+v2+w2(−bu+av−vx+uy)sinθ

u2+v2+w2

1



(4.42)

4.7 Filling hole in triangle mesh

In the literature we have surveyed, existing approach to fill holes in meshes

can be distinguished two main categories: the geometric and non-geometric

approaches. Among the non-geometric approaches, authors in [4] detected

the mesh areas that have to be filled with using volumetric representation.

Davis et al [50] filled the gaps by applying volumetric process to extend

a signed distance function through this volumetric representation until its

zero set bridges whatever holes may be present. A similar approach has

been developed by Authors in [32] for the simplification and the repairing

of polygonal meshes. The advantage of this approach is working well for

complex holes and drawback of current method include time-consuming

and may generate incorrect topology in some case.

Considering the geometric approaches, the hole is filled in [80] with mini-

mum area triangulation of its contour. Then the triangulation is refined so

that the triangle density agrees with the density of the surrounding mesh

triangles. Finally, the hole is smoothed with fairing technique based on
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an umbrella operator [70]. A satisfactory hole filling method should: 1.

run in reasonable time. 2. be enable to patch an arbitrary holes for any

model. 3. cover the missing geometry well. A hole filling process that is

implemented here is summarized in following steps:

- Identify holes in triangle mesh. Holes can be identified automatically

by looking close loop of boundary edges.

- Cover the holes with Advance Front Mesh technique.

- Modify the triangles in the initial patch mesh by estimating desirable

normals instead relocating them directly.

- Rotate triangle by local rotation.

- Make algorithm more accurate by re-positioning these coordinate by

solving the Poisson equation according to desirable normal and bound-

ary vertices of the hole.

- Update the coordinate to make the smoothed patch mesh.

4.7.1 Hole patching

At first the hole is identified automatically by looking close loop of bound-

ary edge. Then the Advance front mesh technique is applied over the hole

to generate an initial patch mesh as follows:

Step 1: The angle αi between two adjacent boundary edges at each

vertex vi on the front is calculated.

Step 2: When the angle α is less than or equal to 75◦, we simply con-

nect the neighboring vertices of V1, namely V0 and V2 , to form a new

triangle. When the angle is larger than 75◦, but less than or equal to 135◦.
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As figure 4.11.(b) depicts, a new vertex V3 is inserted along the bisection

line of vectors V0 V1 and V1 V2 to determine the new vertex. When the

angle is larger than 135◦, as figure 4.11.(c), two new vertices, V3 and V4

are inserted, equally distributed on two triple-section lines of vectors V0 V1

and V1 V2 .

Step 3: The distance between the new vertex and related boundary

vertexes is calculated when the distance is less than given threshold, they

should merge.

Step 4: Update the front and repeat the algorithm until the hole is

patched with new triangles.

4.7.2 Harmonic-based desirable normal computing

The earliest purpose of discrete harmonic functions is to map a disk-like

surface ST onto a plane S∗. The basic idea is to find a piecewise linear

mapping f : ST → S∗ to minimize the Dirichlet energy

ED =
1

2

∫
ST

‖gradST
f‖2 (4.43)

subject to the Dirichlet boundary condition f |∂ST = f0. As for triangle

T = {v1, v2, v3} the Dirichlet energy can be expressed as:

2
∫
T
‖gradTf‖2 = cot θ3‖f(v1)−f(v2)‖2+cot θ2‖f(v1)−f(v3)‖2+cot θ3‖f(v2)−f(v3)‖2

(4.44)

The equation for the minimization problem can therefore be re-expressed

as the following linear system

∑
vjεNi

wi,j(f(vj)− f(vi)) = 0 vi ∈ VI (4.45)
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Figure 4.11: Rules for generating initial patch over the hole.

where wi,j = cotαi,j + cotβi,j the angles αi,j and βi,j are shown in figure

Fig 4.12 and Ni refers to the 1-ring vertices of vertex vi . The associated

matrix is symmetric and positive and sparse, and so the linear system

is uniquely solvable. The system can be solved efficiently with iterative

methods such as conjugate gradient method. Note that system has to be

solved three times. Once for x-, once for y- and once for z-coordinate.

Now the desirable normal of all vertices in initial patch mesh is obtained.

However, Poisson equation requires a discrete guidance field, i.e., w, defined

on the triangles of the patch mesh. The guidance vector field is constructed

98



CHAPTER 4. FILLING HOLE IN . . . 4.7. FILLING HOLE IN TRIANGLE . . .

Figure 4.12: 1-ring vertex of vi and angles opposite to edge vivj .

by triangle rotation. Local rotation is applied to each triangle of initial

patch mesh. Let n be the original normal of triangle and n’ be the new

normal of triangle that is calculated with desirable normal of vertices of

triangle and c be the center of triangle. The rotation can obtained by

rotating n to n’ around c. See 4.13. After rotation, the original patch

mesh is torn a part and triangles are not connected any more and this torn

triangles are used to construct a guidance vector filed for Poisson equation.

Finally, the disconnected triangles are stitched by solving Poisson equation.

Figure 4.13: a) Initial patch mesh in triangle mesh, (b) A triangle red is initial patch

mesh and its locally rotated is version green.
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4.7.3 Poisson equation

In this section, we introduced the details of Poisson equation for recon-

struction smooth and accurate patch mesh. We regard the mesh geometry

(coordinates) as scalar function. The Poisson equation is originally ap-

peared from [58]. The aim of this method is solving an unknown target

mesh with known topology but unknown geometry (vertex coordinate).

Poisson equation like Harmonic equation has to solved three time.

The Poisson equation with Dirichlet boundary condition [81], [111] is for-

mulated as

∇2f = ∇.w over Ω, with f |∂Ω = f ∗|∂Ω (4.46)

where

- f is an unknown scalar function defined over interior of Ω.

- f ∗ is a known scalar function that provides the desirable values on the

boundary ∂Ω.

- ∇2 = ( ∂2

∂x2 ,
∂2

∂y2 ,
∂2

∂z2 ) is Laplacian operator.

- w is a Guidance Vector Filed and ∇.w = ∂wx

∂x + ∂wy

∂y + ∂wz

∂z is the

divergence of w = (wx, wy, wz).

Thus it can be defined as least-squares minimization problem:

min
f

∫ ∫
Ω
|∇f − w|2 with f |∂Ω = f ∗|∂Ω (4.47)

A discrete vector field on a triangle mesh is defined to be a piecewise

constant vector function whose domain is the set of point on the mesh

surface. A constant vector is defined for each triangle, and this vector

is coplanar with the triangle. For discrete vector field w on a mesh , its

divergence at vertex vi can be defined to be

(div w)(vi) =
∑

TkεN(i)

∇Bik.w|Tk| (4.48)
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where Ni is the 1-ring vertices of vi, |Tk| is the area of triangle Tk, and

∇Bik is the gradient vector of Bi within TK .

The discrete gradient of the scalar function f on a discrete mesh is expressed

as

∇f(v) =
∑
i

fi∇φi(v) (4.49)

with φi(.) begin the piecewise linear basis function valued 1 at vertex vi

and 0 at all other vertices and fi begins the value of f at vi and it is one

of the coordinate of vi . The discrete Laplacian operator can determine as

follow

∆f(vi) =
1

2

∑
Vj∈Ni

(cotαi,j + cotβi,j)(fi − fj) (4.50)

where αi,j and βi,j are the two angles opposite to edge in the two triangles

sharing edge(vi and vj) and Ni is the set of the 1-ring vertexes of ver-

tex vi, see Figure 4.12. Finally discrete Poisson equation is expressed as

follows:∇2f ≡ div(5f) = 5w
Discrete Poisson equation with Dirichlet boundary condition can be de-

fined by the sparse linear system. It can be represented as the following

form:

Ax = b (4.51)

where the coefficients matrix A is determined by Eq.4.50 and the vector

b is determined by Eq4.48 and unknown vector x is the coordinate of all

vertices on the patch mesh.

The smooth and accurate patch mesh is constructed as follow: First, Com-

pute the gradient of each new vertex on the adjacent triangle by using

Eq.4.49. Next, calculate the divergence of every boundary vertex by using

Eq.4.48 then, determine the coefficient matrix A by Eq4.50. Vector b in

this equation is determined by using divergence of all boundary vertices.
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Finally, solve the Poisson equation and obtain the new coordinate of all

vertices of the patch mesh.
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Chapter 5

Alignment of the scanned foot with

shoe last data base

5.1 Introduction

With recent improvement of in the methods for the acquisitions and render-

ing of 3D models, the method for retrieval of models from large repositories

of 3D shapes has gained prominence in the graphic and vision communities.

A variety of methods have been proposed that enable the efficient querying

of model repositories for a desired 3D shape. Many of these methods use

a 3D models as query and attempt to receive models from the data base

that have a similar shape.

One of the specific challenges in matching 3D shapes arise from the fact

that in many application, models should be considered to be same if they

differ by a similarity transformation. Thus in order to match two models, a

measure of similarity needs to be computed at the optimal transformation,

scale and rotation. A general approaches for alignment of 3D client foot

scan with shoe last data base is described in this chapter.
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5.2 Problem Description

Triangle mesh models are used for representation of objects can be gener-

ated using a variety of techniques which is described in chapter 3. 3D-model

are given in arbitrary orientation, scales and positions in 3D-space R3. 3D

model alignment can be defined in such a way that invariance with respect

to translation, rotation, scaling and reflection (flipping)of mesh.

An example of pose estimation (normalization) is depicted in figure 5.1.

Three 3D-models of shoe last are shown in the original position, orien-

tation, and scale(a, b, c), while the canonical frame are displaced in the

second row(d, e, f). The models are aligned parallel with x-y space.

Figure 5.1: Models of shoe last are initially given in arbitrary units, position, and ori-

entation (a, b, and c). The out come of the pose estimation procedure is the canonical

positioning of each model (d, e, and f) which is parallel with x-y space.

There have been several approaches for estimating the pose of a 3D

model The most prominent tool for solving the problem is the Principal

Component Analysis (PCA)[62], also known as the discrete Karhunen-

Loeve transform, or the Hotelling transform, which is described in details

in section 5.3. Since applying the PCA to the set of vertices of a mesh

model can produce undesired normalization results, the modification of

the PCA are given is this chapter. We will present ”weighted” principal

component analysis (WPCA) for alignment of 3D foot scan of client with
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shoe last data base.

Pose estimation of a 3D-mesh model based on the Extended Gaussian Im-

ages (EGIs) is one of the first approaches reported in the literature. An

EGI defines a function on a unit sphere, by using normal vectors of faces of

the mesh. The method is sensitive to polygon tessellations of a 3D-shape,

noise, and face orientation. More details about the technique can be found

in [62].

In [75], the pose estimation is also based on the PCA wherein the under-

lying 3D-model is supposed to be a solid. However, 3D-models are not

guaranteed to consist of closed surfaces bounding one or more solids, and

it would be a difficult and questionable undertaking to enforce objects to

be solids by stitching up surfaces with boundaries. Therefore, the approach

is suitable only for a small class of 3D models. The other significant draw-

back lies in the fact that the procedure is timeconsuming.

We consider that the pose normalization should be both efficient and ef-

fective. Also, meshes in different levels-of-detail representing the same

real-world object, should be reasonably aligned in the canonical frame.

5.3 Pricipal Componenet Analysis

The principal component analysis(PCA)[102, 36, 76], is widely used in

signal processing, statistics(data analysis), compression, and neural com-

muting. In some applications areas, the PCA also called the(discrete)

Karhunen-loeve transform, or Hotelling transform. The following presen-

tation of the original PCA analysis is adapted from [36]. The PCA is based

on the statistical representation of random variable. Suppose we have finite

set of data vectors V, where

V =
{
v| = (v1, v2, ..., vn) = [v1, v2, ..., vn]

T ∈ Rn, n ∈ N
}

(5.1)
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Let mv be mean of the set V

mv = E {V } =
1

|V |
∑
v∈V

v (5.2)

Where |V | denotes the number of elements of set V (i.e, the cardinal num-

ber). The associated covariance matrix of the same data set is given by

Cv = [cij]n×n = E
{
(v −mv)(v −mv)

T
}

=
1

|V |
∑
v∈V

(v−mv)(v−mv)
T (5.3)

matrix Cv is, by definition, symmetric real matrix with non-negative ele-

ments. Elements cij(i 6=j) represent the covariance between the components

vi and vj(5.1). If two components vi and vj of the data are uncorrelated,

then their covariance is zero (cij = cji = 0). The element cij represents the

variance of the component vi, which indicates the spread of the component

value around its means value. Eigenvalues and eigenvectors of the covari-

ance matrix are used to form an orthogonal basis of the space Rn. We

recall that the eigenvectors ei(‖ei‖ = 1) and the corresponding eigenvalues

λi are the solutions of equations

CV ei = λiei (i = 1, ..., n) (5.4)

We stress that in the case of a symmetric non-negative matrix all eigenval-

ues are non-negative real numbers. By ordering the eigenvectors according

to the order of descending eigenvalues, we obtain an orthonormal basis

with the first eigenvector coinciding with the direction of largest variance

of the set V . Directions of largest variance are usually regarded as direc-

tions in which the original data set possesses the most significant amounts

of energy.

Let A be a matrix consisting of ordered eigenvectors of the covariance ma-

trix as the row vectors. The ordered eigenvectors can be seen as basis of

a new coordinate frame with the origin placed at the point mv We regard

the new coordinate system as the PCA coordinate system (frame). A data
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vector v∈V from the original system is transformed into the vector p in

the PCA frame

p = A(v −mV ) (5.5)

In the PCA frame data are uncorrelated, i.e., the non-diagonal elements of

the covariance matrix are equal to zero. Before explaining how we engage

the PCA for 3D-model alignemnet purposes, we present application of the

PCA in data compression and image processing.

Data can be compressed using the PCA in the following manner. The orig-

inal vector v, which is projected on the coordinate axes of the PCA frame

(5.6), can be reconstructed by applying an affine map to the projection p

given by,

v = ATp+mV (5.6)

where we used the property of an orthogonal matrix A−1 = AT (AT denotes

the transpose of matrix A. If we do not use all the eigenvectors of the

covariance matrix, the data can be represented in a lower dimensional

space, whose dimension is determined by the number of used eigenvectors,

i.e., basis vectors of the orthonormal basis.

Let Ak be the matrix consisting of the first k(ordered) eignevectors as th

row vectors. By substuting A with Ak in equation(5.5), we obtain

p = Ak(v −mV ) and v̂ = AT
KP +mV (5.7)

Hence, we project the original data vector from an n-dimensional linear

metric space Rn on a new k-dimensional vector space RK , whose orthonor-

mal basis consists of the first k eigenvectors of the covariance matrix. Then,

we perform a kind of reverse transform . However, we cannot reconstruct

the original data vector, i.e., v̂ 6= v because the matrix Ak of the matrix

k×n possesses the following properties:

A.AT = Ik, but AT .A 6=In, where In denotes the identity matrix of type

n× n. We regard v̂ as approximation of v, which is represented in a lower
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dimensional space. If we choose K�n then the original data is compressed

by the factor of k/n. It can be proven [102] that described linear dimension

reduction technique is optimal in mean square scene. In other words, the

mean-square error between the original data v and the reconstructed data

v̂ obtained by using a given number of eigenvectors is minimized.

Data compression using the PCA possesses the following useful properties:

- The computational costs of the subsequent processing steps are re-

duced.

- The presence of noise in original data will be reduced, because the

directions of largest spreads (the first components) are more robust

to noise than directions of lowest variance

- By setting k = 3 (or k = 2), a high-dimensional space is projected so

that data can be visualized.

The value of sorted eigenvalues λ1≥λ2 ≥ .... ≥ λn carry a useful informa-

tion. Namely, the value of λi is proportional to the variance (energy) along

the direction determined by the eigenvector ei. For applications in which

a varying amount of energy of the original data should be preserved, we

simply fix the number of used eigenvectors. Alternatively, the total amount

of energy carried by the first k eigenvectors can be used to determine the

dimensionality. For instance,

k = max

j|
j∑
i=1

λi≤t
n∑
i=1

λi

 (5.8)

where t ∈ [0, 1] is a threshold. In this case, the total amount of en-

ergy(information) is approximately consistent with a varying dimensionaly

k.

Thus, dealing with a lossy compression gained by the PCA introduces a

trade-off between the reduction of vector dimension (we want to simplify
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the representation as much as possible) and the loss of information (we

want to preserve as much as possible of the original information content).

The PCA offers convenient mechanisms (fixed k vs. fixed t) to control this

trade-off.

Properties of the PCA can be depicted using an application in image pro-

cessing. Suppose that we have a color image of dimensions M ×N . Each

pixel is represented by a triplet of red, green, blue(RGB) component val-

ues. We consider that each image consists of three band, i.e., three gray

scale images each of which is represents pixel values of the corresponding

color. If we want to generate a single grayscale image so that the most

details are shown, then we apply the PCA to the set of 3D points, which

are obtained by treating color triplets of pixels as points in R3 .

An example of RGB image and the outcome of PCA are shown in figure

5.2. Pixels of the given image are represented as points in a 3D space,

where x, y, and z represent values of red, green and blue componenets,

respectively. The first eigenvalue (P1) having the largest eigenvalue points

to the direction of largest variance(spread) whereas the second (P2) and

the third (P3) eigenvectors are orthogonal to the first one.

In this example the first eigenvalue corresponding to the first eigenvector

Figure 5.2: The analyzed image (left) and the pixels of the image in the color space (right).

Axes x, y, and z represent values of red, green, and blue components, respectively. The

PCA coordinate axes are denoted by P1, P2 and P3

is λ1 = 9211.79 while other eigenvectors are λ2 = 437.38 and λ3 = 74.29.

Hence, the first eigenvector contains alomost all energy. This means that
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the data could be well approximated with one-dimensional representation.

The result is depicted in figure 5.3. In the first row, red, green, and blue

bands of the original image (figure 5.3) are represented by grayscale im-

ages. The first image in the second row (P1) is created by normalizing the

first coordinate of each point in the PCA frame.

In this example, we deal with 8-bit gray scale and the pixel values are nor-

malized so that the lowest value of the first PCA coordinate is mapped to

0, the highest to 255, while the values in between are proportionally set.

The last two images in figure 5.3 are obtained analogously.

The example of finding largest spreads of a point set (right-hand side in

figure 5.2) suggests an analogous application to the point set I of a mesh

model.

5.4 Modifications of the PCA

We may apply PCA to sets of 3D point-clouds, but different sizes of trian-

gle meshes cannot be considered. In order to account for different sizes of

triangle Paquet et al. [77] established weights associated to center of grav-

ity of triangles and Vranic et al. [106] used weighting factors associated to

vertices. These two methods showed improvements if compared to the clas-

sical PCA. The ”weighted” PCA analyses were designed to approximate

the PCA of the whole point set of the model.All the models should be

aligned at equal position, in order to have equivalent cross sections from

center of mass of each model towards the heel and toe. To achieve the

alignment we described the main steps and details of ”weighted” PCA in

the next section. First, we applied Step 1 through Step 3 for the first model

in shoe last data base (See Figure 5.3). Then, for alignment of another

models with the first model we applied Steps 1, 2, 4, 5. See Figure 5.4.
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Figure 5.3: a) Input 3D smooth triangle. b) Translated center of gravity to the origin.

The red, green and blue lines are eigenvectors. c) Rotated 3D model with its eigenvectors.

d) Target model.

Figure 5.4: a) Translated center of gravity to the origin. b) Rotated 3D foot model. d)

The alignment of 3D foot in b with shoe last in c.

Let T = {t1, ..., tn} (ti ⊂ R3) be a set ”triangle mesh” V = {v1, ..., vn} (vi =

(xi, yi, zi) ∈ R3)be a set of ”vertices” associated to triangle mesh and c be

the ”center of gravity” of the model.

Step1.Translate center of gravity to the origin and create a new list of

vertices, I , such that:

c =
n∑
i=0

vi
n

(5.9)

I = {V1 − c, ..., Vn − c} (5.10)

Step 2.Let A be the total sum of the areas of all triangles in the mesh, let

Ak be the area of triangle k within the mesh, let cti ”center of gravity of

each triangle” and ct the total sum of ”center of gravity” of all of triangles
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in mesh. The covariance matrix 3 ∗ 3 is determined by:

ct =

∑n
i=0 cti
n

(ct = (xi, yi, zi ∈ R3)) (5.11)

CM =


Covxx Covxy Covxz

Covyx Covyy Covyz

Covzx Covzy Covzz

 (5.12)

Covxx =

∑n
i=0Ai(cti − ctx)(ctix− ctx)

A
(5.13)

Covariance matrix CM is a symmetrical real matrix, therefore its eigen-

vectors are positive real numbers and orthogonal. We sort eigenvalues in

decreasing order to find the corresponding eigenvectors and to scale them

in Euclidean unit lengths. The rotational matrix R is constructed with

eigenvectors in rows. We apply this matrix to all of the vertices of a trian-

gle and we form a new vertex sets called:

I
′
= {R× I1, ..., R× In} (5.14)

Step3. Rotate first shoe last with its eigenvectors in figure 5.3.c up to

a position where the foot shape becomes parallel with x − y space, see

figure 5.3.d. Record the new position of these 3 eigenvectors in the file as

the origin matrix,oem

CM =


OrgionEig1x OrgionEig2x OrgionEig3x

OrgionEig1y OrgionEig2y OrgionEig3y

OrgionEig1z OrgionEig2z OrgionEig3z

 (5.15)

step 4. Let matrix Nem be transpose of a matrix R and Oem be the

origin matrix that is recorded in step 3. The alignment is accomplished by

constructing a rotation matrix R
′

through the following formula:

R
′
= Oem ×Nem (5.16)
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step 5.Get the matrix R
′

in Step 4 and apply it to all I
′
. New point

sets I” are calculated, See figure 5.4.

I” =
{
R

′

1 × I
′

1, ...R
′

n × I
′

n

}
(5.17)

5.5 Search for similarity estimation

The similarity search algorithm is based on the cutting foot triangle mesh

into several sections towards the heel and the toe. Then the area of each

section (available contour) is calculated and compared with the area of

equal sections in shoe last data base. Let M be the mesh structure of the

model. A triangular mesh is defined as a set of vertices and a set of edges

and triangles that join these vertices. The two triangles which share a

common edge are called adjacent triangles. The model consists of three

list V, E, T as follows: Triangle list consists of 3 edges, edges list consists

of 2 vertices and adjacent triangles and Vertex list consists of coordinates

in 3D vi = (xi, yi, zi) ∈ R3 is illustrated these basic concepts see figure5.6.

Figure 5.5: Preliminaries related to triangle mesh with intersection planes for cutting

shape to several sections.

113



CHAPTER 5. ALIGNMENT OF THE . . . 5.5. SEARCH FOR SIMILARITY . . .

The algorithm has the following steps summarized in Figure 5.7.

Step 1: Find the intersection of the cutting plane with the edge of a

triangle and create new vertex.

Step 2: Choose the edge with the endpoints on the opposite sides of the

intersection points.

Step 3: Find the next edge and the previous edge of the current edge.

Step 4: Build a new edge between the intersection point and the opposite

vertices of the current edges triangles.

Step 5: Build a new triangle between the new edges.

Step 6: Update the triangles and vertices of the current edge.

Step 7: Add the new triangle and the edge to the list.

The output of our algorithm is set of vertices and edges related to each

contour as illustrated in Figure 5.7.

Let Vc = v1; ...; vn(vi = (xi; yi; zi) ∈ R3) be a set of ”vertices” and Ec =

{e1; ...; en} the set of ”edges” associated to the contours.

Step 1: Let cc be center of gravity of contour determined as follow:

cc =

∑N
i=0 V ci
N

(cc = xi, yi, zi ∈ R3) (5.18)

Step 2: For calculating the area of each contour. We divide the vertices

of contours edge and center of gravity of contour in triangles. Let Ai be

the area of each associated triangle in the contour and N be the number of

triangles that associated with edges and center of gravity of contour. The

area of each contour can be calculated as follow:

A =
N∑
i=0

Ai (5.19)
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Figure 5.6: Steps for cutting shape to several sections.

Figure 5.7: The illustrated contour after cutting mesh.
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Chapter 6

Conclusion

As consumers are becoming increasingly selective of what they wear on

their feet, footwear manufacturing industry encountered the problem of

developing footwear which is fulfils consumers requirement better than its

computerise. Thus production of custom tailored product is widely re-

quired in manufacturing industry nowadays and the business paradigm is

moving from producer- centered productivity to consumer-centered cus-

tomization.

Very few standards exist for finding products to people. Footwear fit is

a noteworthy example for consumer consideration when purchasing shoes.

Thus mass customization starts with understanding individual customers

requirements and it finishes with fulfilment process of satisfying the target

customer with near mass production efficiency.

Loose shoes (even thought function may be impaired) are not as uncom-

fortable as when the shoes are tight. Unlike any other consumer product,

personalized footwear or the matching of footwear to feet is not easy if

delivery of discomfort is predominantly by a shoe that has designed un-

suitable for the particular shape of foot. Properly constructed footwear

contribute to fit and comfort . The design of new shoes starts with the

design of the new shoe last.
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Traditionally, foot dimensions are measured using some devices such as

the Ritz Stick device, the Brannock device, the Scholl device; callipers and

tapes are also used for measurement of foot dimensions. Foot measuring

always takes a lot of time and shoe making industry in order to make an

accurate custom shoe last, must manually measure the specific consumers

foot, and sometimes, more than thirty measurement are required. The last

is also manually manufactured by experienced last maker. Thus the pro-

cess of foot measuring and last manufacturing process and custom footwear

is expensive to produce and time-consuming because of the complexity

constraints imposed by footwear manufacturing process. Nowadays, the

combination of 3D scanning system with mathematical technique makes

it possible, automating the process of producing custom tailored footwear

based on consumers foot shape.

We presented an approaches for addressing the computerize footwear fit

customization in industry problem. The basic idea of solution is to com-

pare the lasts which were used to manufacture the shoes and the scanned

feet of the clients.

During the surface reconstruction process, a mesh is calculated from cloud

points. Depending on both the complexity of the object to be reverse

engineered and the adopted data acquisition system technology (e.g. co-

ordinate measuring machines or laser scanning), some areas of the object

outer surface may never be accessible. This induces some deficiencies in

the point cloud and a set of holes in the triangle mesh. This deffciency is

not acceptable when the 3D model is taking into actual application. Thus

certain repair must be done before taking these models into actual appli-

cation.

We presented robust algorithm for filling hole in triangle mesh .Our algo-

rithm is based on the advancing front mesh technique to cover the hole,

modifying the triangles in the initial patch mesh by estimating Harmonic
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normals instead of relocating them directly and the Poisson equation ac-

cording to desirable normal and boundary vertices of the hole to optimize

the missing geometry more accurately. After obtaining complete 3D model,

the result data must be generated and aligned.

One of the specific challenges faced in the area of shape matching is that

a shape and its image under a similarity transformation are considered to

be the same.

The most prominent tool for solving the problem is the Principal Compo-

nent Analysis (PCA). PCA also is known as the discrete Karhunen-Loeve

transform, or the Hotelling transform aligns a model by considering its

centre of mass as the coordinate system origin, and its principle axes as

the coordinate axes. The purpose of the PCA applied to a 3D model is

to make the resulting shape feature vector independent to translation and

rotation as much as possible. By applying the PCA to a set of vertices of

a 3D-mesh, different sizes of triangles are not taken into account. Thereby

we presented Weight Principal Components Analysis (WPCA) for align-

ment of 3D-mesh model. After these substantial post processing methods,

the 3D foot model is ready for sophisticated modelling operations. Our

new approach will be based on the efficient algorithm for cutting 3D tri-

angle mesh to several sections toward heel and toe. Then the area of each

contour is calculated and compared with area of equal section in shoe last

data base for finding footwear fit .
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